NetSA Python Documentation

Release 1.3

Carnegie Mellon University

March 28, 2011

CONTENTS

netsa.script — The NetSA Scripting Framework 1
L1 OVErVIEW . . . o o o o e e e e e e e e e e e 1
1.2 EXCeptiONS . . . v v v v i e e e e e e e e e e e 3
1.3 Metadata Functions e e e e e 4
1.4 Script Parameters e e e e e e e e e e 4
1.5 Verbose Output o o i e e e e e e e e e 7
1.6 Flow Data Parameters e e e e e e 8
1.7 Producing Output. e e e e 10
1.8 Temporary Files o . e e e e e e e e e e 12
1.9 Script EXecution e e e e e e e e e e e e 12
netsa.sql — SQL Database Access 13
2.1 OVEIVIEW . . o v vttt e e e e e e e e e e 13
2.2 EXCEPHOMNS . v . v v o e v e 13
2.3 CoNNeCtiNg v v v v e 14
24 Connections and Result Sets L e e 14
2.5 Compiled Queries e e e 15
2.6 Implementinga New Driver e e 16
2.7 Experimental Connection Pooling e e 17
2.8 WhyNotDB API2.07 e 17
netsa.util.shell — Robust Shell Pipelines 19
31 OVEIVIEW . o o ottt e e e e e e e e e e e e e 19
3.2 EXCEPUONS .« v v v ot e 21
3.3 Building Commands and Pipelines e 21
34 Running Pipelines 24
Data Manipulation 27
4.1 netsa.data.countries—Countryand RegionCodes 27
4.2 netsa.data.format — Formatting DataforOutput 28
43 netsa.data.nice — “Nice” Numbers for Chart Bounds. 33
44 netsa.data.times — Time and Date Manipulation 33
Miscellaneous Facilities 37
5.1 netsa.files —Fileand Path Manipulation 37
52 netsa.files.datefiles— Date-based filenames, 38
5.3 netsa.json—IJSON Wrapper Module 40
54 netsa.tools.service — Tools for building services 40
5.5 netsa.util.clitest — Utility fortesting CLItools 41

8

5.6 netsa.util.compat — Python version compatibilitycode
Changes

6.1 Version 1.3-2011-03-28 e
6.2 Version 1.2-2011-01-12o o o
6.3 Version 1.1-2010-10-04
6.4 Version 1.0-2010-09-14 e
6.5 Version 0.9-2010-01-19 o o e e
Licenses

7.1 License fornetsa-python
7.2 License for simplejson oL e e e e e e e e e e

Indices and tables

45
45
45
45
45
46

47
47
47

49

CHAPTER
ONE

NETSA.SCRIPT — THE NETSA
SCRIPTING FRAMEWORK

1.1 Overview

The netsa.script module provides a common framework for building SiLK-based analysis scripts. This frame-
work is intended to make scripts re-usable and automatable without much extra work on the part of script authors. The
primary concerns of the scripting framework are providing metadata for cataloging available scripts, standardizing
handling of command-line arguments (particularly for flow data input), and locating output files.

Here’s an example of a simple Python script using the netsa.script framework.

First is a version without extensive comments, for reading clarity. Then the script is repeated with comments explaining
each section.

#!/usr/bin/env python

Import the script framework under the name "script".
from netsa import script

Set up the metadata for the script, including the title, what it
does, who wrote it, who to ask questions about it, etc.
script.set_title("Sample Framework Script")
script.set_description ("""
An example script to demonstrate the basic features of the
netsa.script scripting framework. This script counts the
number of frobnitzim observed in each hour (up to a maximum
volume of frobs per hour.)
e
script.set_version("0.1")
script.set_contact ("H. Bovik <hbovik@example.org>")
script.set_authors (["H. Bovik <hbovik@example.org>"])

script.add_int_param("frob-limit",
"Maximum volume of frobs per hour to observe.",
default=10)

script.add_float_param("frobnitz-sensitivity",
"Sensitivity (between 0.0 and 1.0) of frobnitz categorizer.",

default=0.61, expert=True, minimum=0.0, maximum=1.0)

script.add_flow_params (require_pull=True)

NetSA Python Documentation, Release 1.3

script.add_output_file_param("output-path",
"Number of frobnitzim observed in each hour of the flow data.",
mime_type="text/csv")

See the text for discussion of the next two functions.

def process_hourly_data(out_file, flow_params, frob_limit, frob_sense):

def main() :
frob_limit = script.get_param("frob-limit")
frobnitz_sensitivity = script.get_param("frobnitz-sensitivity")
out_file = script.get_output_file ("output-path")
for hour_params in script.get_flow_params () .by_hour () :
process_hourly_data(out_file, hour_params, frob_limit,
frobnitz_sensitivity)

script.execute (main)

Let’s break things down by section:

#!/usr/bin/env python
from netsa import script

This is basic Python boilerplate. Any other libraries we use would also be imported at this time.

script.set_title("Sample Framework Script")
script.set_description ("""
An example script to demonstrate the basic features of the
netsa.script scripting framework. This script counts the
number of frobnitzim observed in each hour (up to a maximum
volume of frobs per hour.)

nmnn Yl)

script.set_version("0.1")

script.set_contact ("H. Bovik <hbovik(@example.org>")
script.set_authors(["H. Bovik <hbovik@example.org>"])

Script metadata allows users to more easily find out information about a script, and browse available scripts stored in
a central repository. The above calls define all of the metadata that the netsa.script framework currently supports. It is
possible that a future version will include additional metadata fields.

script.add_int_param("frob-limit",
"Maximum volume of frobs per hour to observe.",
default=10)

script.add_float_param("frobnitz-sensitivity",
"Sensitivity (between 0.0 and 1.0) of frobnitz categorizer.",
default=0.61, expert=True, minimum=0.0, maximum=1.0)

Script parameters are defined by calling netsa.script.add_X_param (where X is a type) for each parameter.
Depending on the type of the parameter, there may be additional configuration options (like minimum and maximum
for the float parameter above) available. See the documentation for each function later in this document.

Expert parameters are tuning parameters that are intended for expert use only. An expert parameter is created by
setting expert to True when creating a new parameter. This parameter will then be displayed only if the user asks for
—-—help-expert, and the normal help will indicate that expert options are available.

2 Chapter 1. netsa.script — The NetSA Scripting Framework

NetSA Python Documentation, Release 1.3

script.add_flow_params (require_pull=True)

Parameters involving flow data are handled separately, in order to ensure that flows are handled consistently across all
of our scripts. The netsa.script.add_flow_params function is used to add all of the flow related command-
line arguments at once. There is currently only one option. If the require_pull option is set, the flow data must
come from an rwfilter data pull (including switches like ——start-date, ——end-date, ——class, etc.) If
require_pull is not set, then it is also possible for input files or pipes to be given on the command-line.

script.add_output_file_param("output-path",
"Number of frobnitzim observed in each hour of the flow data.",
mime_type="text/csv")

Every output file (not temporary working file) that the script produces must also be defined using calls to the frame-
work—this ensures that when an automated tool is used to run the script, it can find all of the relevant output files. It’s
preferable, but not required, for a MIME content-type (like "text /csv") and a short description of the contents of
the file be included.

def process_hourly_data(out_file, flow_params, frob_limit, frob_sense):

In this example, the process_hourly_data function would be expected to use the functions in
netsa.util.shell to acquire and process flow data for each hour (based on the flow_params argument). The
details have been elided for simplicity in this example.

def main() :
frob_limit = script.get_param("frob-limit")
frobnitz_sensitivity = script.get_param("frobnitz-sensitivity")
out_file = script.get_output_file("output-path")
for hour_data in script.get_flow_params () .by_hour () :
process_hourly_data(out_file, hour_params, frob_limit,
frobnitz_sensitivity)

It is important that no work is done outside the main function (which can be given any name you wish). If instead
you do work in the body of the file outside of a function, that work will be done whether or not the script has actually
been asked to do work. (For example, if the script is given ——he1p, it will not normally call your main function.) So
make sure everything is in here.

script.execute (main)

The final statement in the script should be a call to netsa.script.execute, as shown above. This allows the
framework to process any command-line arguments (including producing help output, etc.), then call your main
function, and finally do clean-up work after the completion of your script.

See the documentation for functions in this module for more details on individual features, including further examples.

1.2 Exceptions

exception ParamError
This exception represents an error in the arguments provided to a script at the command-line. For exam-
ple, ParamError (' foo’, ’2x5’, ’'not a valid integer’) is the exception generated when the
value given for an integer param is not parsable, and will produce the following error output when thrown from
a script’s main function:

1.2. Exceptions 3

NetSA Python Documentation, Release 1.3

<script-name>: Invalid foo ’'2x5’: not a valid integer

exception UserError
This exception represents an error reported by the script that should be presented in a standard way. For exam-
ple, UserError (' your message here’) will produce the following error output when thrown from a
script’s main function:

<script-name>: your message here

exception ScriptError
This exception represents an error in script definition or an error in processing script data. This is thrown by
some netsa.script calls.

1.3 Metadata Functions

The following functions define “metadata” for the script—they provide information about the name of the script, what
the script is for, who to contact with problems, and so on. Automated tools can use this information to allow users to
browse a list of available scripts.

set_title (script_title : str)
Set the title for this script. This should be the human-readable name of the script, and denote its purpose.

set_description (script_description : str)
Set the description for this script. This should be a longer human-readable description of the script’s purpose,
including simple details of its behavior and required inputs.

set_version (script_version : str)
Set the version number of this script. This can take any form, but the standard major . minor (. patch) format
is recommended.

set_package_name (script_package_name : str)
Set the package name for this script. This should be the human-readable name of a collection of scripts.

set_contact (script_contact : str)
Set the point of contact email for support of this script, which must be a single string. The form should be
suitable for treatment as an email address. The recommended form is a string containing:

Full Name <full.name@contact.email.org>

set_authors (script_authors : str list)
Set the list of authors for this script, which must be a list of strings. It is recommended that each author be listed
in the form described for set _contact.

add_author (script_author : str)
Add another author to the list of authors for this script, which must be a single string. See set_authors for
notes on the content of this string.

1.4 Script Parameters

These calls are used to add parameters to a script. When the script is called from the command-line, these are
command-line arguments. When a GUI is used to invoke the script, the params might be presented in a variety of
ways. This need to support both command-line and GUI access to script parameters is the reason that they’ve been
standardized here. It’s also the reason that you’ll find no “add an argument with this arbitrary handler function here.

4 Chapter 1. netsa.script — The NetSA Scripting Framework

NetSA Python Documentation, Release 1.3

If you do absolutely need deeper capabilities than are provided here, you can use one of the basic param types and
then do additional checking in the ma in function. Note, however, that a GUI will not aid users in choosing acceptable
values for params defined in this way. Also, make sure to raise ParamError with appropriate information when you
reject a value, so that the error can be most effectively communicated back to the user.

add_text_param (name : str, help : str, [required=False, default : str, default_help : str, expert=False, regex :

str])
Add a text parameter to this script. This parameter can later be fetched as a str by the script using

netsa.script.get_param. The required, default, default_help, and expert arguments are used by all
add_X_param calls, but each kind of parameter also has additional features that may be used. See below for
a list of these features for text params.

Example: Add a new parameter which is required for the script to run.
add_text_param("graph-title",

"Display this title on the output graph.",
required=True)

It is an error if this parameter is not set, and the script will exit with a usage message when it is run at the
command-line.

Example: Add a new parameter with a default value of *” (the empty string):
add_text_param("graph-comment",

"Display this comment on the output graph.",
default="")

If the parameter is not provided, the default value will be used.
Example: Display something different in the help text than the actual default value:
add_text_param("graph-date",

"Display data for the given date.",
default=date_for_today (), default_help="today")

Sometimes a default value should be computed but not displayed as the default to the user when they ask for
help at the command-line. In this case, a default value should be provided (which will be displayed to users of
a GUI), while a value for default_help will be presented in the —help output. In addition, GUIs will also display
the value of default_help in some way next to the entry field for this parameter.

It is perfectly legal to provide a value for default_help and not provide a value for default. This makes sense
when the only way to compute the default value for the field is at actual execution time. (For example, if the
end-date defaults to be the same as the provided start-date.)

Example: Add a new “expert” parameter:
add_text_param("gnuplot-extra-commands",

"Give these extra command to gnuplot when writing output.",
expert=True)

Expert parameters are not listed for users unless they explicitly ask for them. (For example, by using
—-—help-expert at the command line.)
Other keyword arguments meaningful for text params:

regex Require strings to match this regular expression.

Example: Add a new text parameter that is required to match a specific pattern for phone numbers:

1.4. Script Parameters 5

http://docs.python.org/library/functions.html#str

NetSA Python Documentation, Release 1.3

add_text_param("phone-number",
"Send reports to this telephone number.",
regex=r"[0-9]{3}-[0-91{3}-[0-91{4}")

add_int_param (name : sty;, help : str, [required=False, default : int, default_help : str, expert=False, minimum :
int, maximum : int])
Add an integer parameter to this script. This parameter can later be fetched as an int by the script using

netsa.script.get_param. The required, default, default_help, and expert arguments are described in
the help for netsa.script.add_text_param.

Other keyword arguments meaningful for integer parameters:
minimum Only values greater than or equal to this value are allowed for this param.
maximum Only values less than or equal to this value are allowed for this param.

Example: Add a new int parameter which is required to be in the range 0 <= x <= 65535.

add_int_param("targeted-port",
"Search for attacks targeting this port number.",
required=True, minimum=0, maximum=65535)

add_float_param (name : sty help : str, [required=False, default : float, default_help : str, expert=False, mini-

mum : float, maximum : float])
Add a floating-point parameter to this script. This parameter can later be fetched as a :class‘float‘ by the script

using netsa.script.get_param. The required, default, default_help and expert arguments are described
in the help for netsa.script.add_text_param.

Other keyword arguments meaningful for floating-point parameters:
minimum Only values greater than or equal to this value are allowed for this param.
maximum Only values less than or equal to this value are allowed for this param.

add_date_param (name : str;, help : str, [required=False, default : datetime, default_help : str, expert=False])
Add a date parameter to this script. This parameter can later be fetched by the script as a
datetime.datetime object using netsa.script.get_param. The required, default, default_help,
and expert arguments are described in the help for net sa.script.add_text_param.

add_label_param (name : str, help : str, [required=False, default : str, default_help : str, expert=False, regex :

str])
Add a label parameter to this script. This parameter can later be fetched by the script as a Python st r using

netsa.script.get_param. The required, default, default_help, and expert arguments are described in
the help for net sa.script.add_text_param.

Other keyword arguments meaningful for label params:

regex Require strings to match this regular expression, instead of the default " [*\S,]+" (no
white space or commas).

Example: Add a new label parameter that is required to match a specific pattern for phone numbers:

add_label_param("output-label",
"Store output to the destination with this label.",
regex=r"[0-9]{3}-[0-91{3}-[0-91{4}")

add_file_param (name : str, help : str, [required=False, default : str, default_help : str, expert=False, mime_type

s str])
Add a file parameter to this script. This parameter can later be fetched by the script as a Python st r filename

6 Chapter 1. netsa.script — The NetSA Scripting Framework

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

NetSA Python Documentation, Release 1.3

using netsa.script.get_param. The required, default, default_help, and expert arguments are described
in the help for netsa.script.add_text_param.

When the script is run at the command-line, an error will be reported to the user if they specify a file that does
not exist, or the path of a directory.

Other keyword arguments meaningful for file params:
mime_type The expected MIME Content-Type of the file, if any.

add_dir_param (name : str, help : str, [required=False, default : str, default_help : str, expert=False])
Add a directory parameter to this script. This parameter can later be fetched by the script as a Python str
filename using netsa.script.get_param. The required, default, default_help, and expert arguments are
described in the help for netsa.script.add_text_param.

When the script is run at the command-line, an error will be reported to the user if they specify a directory that
does not exist, or the path of a file.

add_path_param (name : str, help : str, [required=False, default : str, default_help : str, expert=False])
Add a path parameter to this script. This parameter can later be fetched by the script as a Python st r using
netsa.script.get_param. The required, default, default_help, and expert arguments are described in
the help for netsa.script.add_text_param.

add_path_param (name : str;, help : str, [required=False, default : str, default_help : str, expert=False])
Add a path parameter to this script. This parameter can later be fetched by the script as a Python st r using
netsa.script.get_param. The required, default, default_help, and expert arguments are described in
the help for netsa.script.add_text_param.

add_flag_ param (name : sty help : str, [default=False, default_help : str, expert=False])
Add a flag parameter to this script. This parameter can later be fetched by the script as a bool using
netsa.script.get_param. The default, default_help, and expert arguments are described in the help
for netsa.script.add_text_param.

get_param (name : str)
Returns the value of the parameter given by the st r argument name. This parameter will be in the type specified
for the param when it was added (for example, date parameters will return a datet ime .datet ime object.)
Note that a parameter with no default that is not required may return None.

1.5 Verbose Output

get_verbosity ()
Returns the current verbosity level (default 0) for the script invocation. The message function may be used to
automatically emit messages based on the verbosity level set for the script. Verbosity is set from the command-
line via the ——verbose or —v flags.

display_message (text, [min_verbosity=1])
Writes the string fext to stderr, as long as the script’s verbosity is greater than or equal to min_verbosity.
Verbosity is set from the command-line via the ——verbose or —v flags. The current verbosity level may be
retrieved by using the get_verbosity function.

Use this function to write debugging or informational messages from your script for command-line use. For
example, writing out which file you are processing, or what stage of processing is in progress.

Do not use it to write out important information such as error messages or actual output. (See UserError or
add_output_file_paramand add_output_dir_param for error messages and output.)

1.5. Verbose Output 7

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/datetime.html#datetime.datetime

NetSA Python Documentation, Release 1.3

1.6 Flow Data Parameters

In order to standardize the large number of scripts that work with network flow data using the SiLK tool suite, the
following calls can be used to work with flow data input.

add_flow_annotation (script_annotation : str)
Add a note that will automatically be included in SiLK data pulls generated by this script. This will be included
only by rwfilter pulls created by this script using Flow_params.

add_flow_params ([require_pull=False, without_params : str list])
Add standard flow parameters to this script. The following params are added by default, but individual
params may be disabled by including their names in the without_params argument. You might wish to
disable the ——type param, for example, if your script will run the same pull multiple times, once with
-—type=in, inweb, then again with ——type=out, outweb. (Of course, you might then also want to
add in-type and out -type params to the script.)

——class Req Arg. Class of data to process

——type Req Arg. Type(s) of data to process within the specified class. The type names and default
type(s) vary by class. Use all to process every type for the specified class. Use rwfilter —help
for details on valid class/type pairs.

——flowtypes Req Arg. Comma separated list of class/type pairs to process. May use all
for class and/or type. This is alternate way to specify class/type; switch cannot be used with
——-class and ——-type

——-sensors Req Arg. Comma separated list of sensor names, sensor IDs, and ranges of sensor IDs.
Valid sensors vary by class. Use mapsid to see a mapping of sensor names to IDs and classes.

——start—date Req Arg. First hour of data to process. Specify date in YYYY/MM/DD [: HH]
format: time is in UTC. When no hour is specified, the entire date is processed. Def. Start of
today

——end-date Req Arg. Final hour of data to process specified as YYYY/MM/DD [: HH]. When no
hour specified, end of day is used unless start-date includes an hour. When switch not specified,
defaults to value in start-date.

If the require_pull argument to net sa.script.add_flow_params is not True, input filenames may be
specified bare on the command-line, and the following additional options are recognized:

——input-pipe Req Arg. Read SiLK flow records from a pipe: stdin or path to named pipe.
No default

——xargs (expert) Req Arg. Read list of input file names from a file or pipe pathname or stdin.
No default

The values of these parameters can later be retrieved as a netsa.script.Flow_params object using
netsa.script.get_flow_params.

get_flow_params ()
Returns a F low_params object encapsulating the rwfilter flow selection parameters the script was invoked
with. This object is filled in based on the command-line arguments described in add_flow_params.

class Flow_params ([flow_class : str, flow_type : stv, flowtypes : str list, sensors : str list, start_date : datetime,

end_date : datetime, input_pipe : str, xargs : stv, filenames : str list])
This object represents the flow selection arguments to an rwfilter data pull. In typical use it is built au-

tomatically from command-line arguments by the netsa.script.get_flow_params call. Afterwards,
methods such as by__hour are used to modify the scope of the data pull, and then the parameters are included
in a call to rwfilter using the functions in netsa.util.shell.

Example: Process SMTP data from the user’s requested flow data:

8 Chapter 1. netsa.script — The NetSA Scripting Framework

NetSA Python Documentation, Release 1.3

netsa.util.shell.run_parallel (
["rwfilter —-—protocol=6 —--aport=25 --pass=stdout",
"rwuniq --fields=sip",
">>output_file.txt"],
vars={’flow_params’: script.get_flow_params() })

Example: Separately process each hour’s SMTP data from the user’s request flow data:

flow_params = script.get_flow_params ()

Iterate over each hour individually

for hourly_params in flow_params.by_hour () :
Format ISO-style datetime for use in a filename
sdate = iso_datetime (hourly_params.get_start_date())
netsa.util.shell.run_parallel (

["rwfilter ——protocol=6 —--pass=stdout",
"rwuniq --fields=dport",
">>output_file_ Ltxt"],

vars={’flow_params’: hourly_params,
"sdate’ : sdate})

by_day ()
GivenaFlow_params objectincluding a start-date and an end-date, returns an iterator yielding
aFlow_params for each individual day in the time span.

If the original F1ow_params starts or ends on an hour that is not midnight, the first or last yielded pulls
will not be for full days. All of the other pulls will be full days stretching from midnight to midnight.

See also by_hour which iterates over the time span of the F1ow_params by hours instead of days.

Raises a ScriptError if the Flow_params has no date information (for example, the script user
specified input files rather than a data pull.) This can be prevented by using require_pull in your call to
script.add_flow_params.

by hour ()
Given a Flow_params objectincluding a start-date and an end-date, returns an iterator yielding
new Flow_params object identical to this one specialized for each hour in the time period.

Example (strings are schematic of the F1ow_params involved):

>>> # Note: Flow_params cannot actually take a str argument like this.
>>> some_flows = Flow_params (' ——type in,inweb --start-date 2009/01/01T00
>>> ' ——end-date 2009/01/01T02")
>>> list (some_flows.by_hour())
[netsa.script.Flow_params (' ——type in, inweb --start-date 2009/01/01T00 '

’ ——end-date 2009/01/01T00"),
netsa.script.Flow_params (' ——type in, inweb --start-date 2009/01/01T01 '

/' ——end-date 2009/01/01TO01"),
netsa.script.Flow_params (' ——type in,inweb --start-date 2009/01/01T02 '

' ——end-date 2009/01/01T02")]

See also by_day which iterates over the time span of the F1ow_params by days instead of hours.

Raises a ScriptError if the Flow_params has no date information (for example, the script user
specified input files rather than a data pull.) This can be prevented by using require_pull in your call to
script.add_flow_params.

by_sensor ()
Given a F1low_params object including a data pull, returns an interator yielding a 1 ow_params for
each individual sensor defined in the system.

1.6. Flow Data Parameters 9

NetSA Python Documentation, Release 1.3

get_argument_list ()
Returns the bundle of flow selection parameters as a list of strings suitable for use as command-line argu-
ments in an rwfilter call. This is automatically called by the netsa.util.shell routines when a
Flow_params object is used as part of a command.

get_class()
Returns the rwfilter pull -—class argument as a str.

get_end_date ()
Returns the rwfilter pull -—end-date argument as a datet ime.datetime object.

get_filenames ()
Returns any files given on the command-line for an rwfilter pullasa str.

get_flowtypes ()
Returns the rwfilter pull -—flowtypes argumentas a str.

get_input_pipe ()
Returns the rwfilter pull -——input-pipe argumentasa str.

get_sensors ()
Returns the rwfilter pull -—sensors argumentasa 1list of str.

get_start_date()
Returns the rwfilter pull -—start-date argument as a datetime.datet ime object.

get_type ()
Returns the rwfilter pull -—type argumentas a str.

get_xargs ()
Returns the rwfilter pull -—xargs argument as a str.

is files()
Returns True if this F1ow_params object represents processing of already retrieved files.

is_pull ()
Returns True if this Flow_params object represents a data pull from the repository. (i.e. it contains
selection switches.)

using ([flow_class : str, flow_type : str, flowtypes : str list, sensors : str list, start_date : datetime, end_date :

datetime, input_pipe : str, xargs : stt, filenames : str list])
Returns a new F'1low_params object in which the arguments in this call have replaced the parameters in

self, but all other parameters are the same.

Raises a ScriptError if the new parameters are inconsistent or incorrectly typed.

1.7 Producing Output

Every output file that a script produces needs to be registered with the system, so that automated tools can be sure to
collect everything. Some scripts produce one or more set outputs. For example “the report”, or “the HTML version
of the report”. Others produce a number of outputs based on the content of the data they process. For example “one
image for each host we identify as suspicious.”

add_output_file_param (name : st, help: str, [required=True, expert=False, description : str,
mime_type="application/octet-stream’])
Add an output file parameter to this script. This parameter can later be fetched by the script as a

Python str filename or a Python file object using netsa.script.get_output_file_name or
netsa.script.get_output_file. Note that if you ask for the file name, you may wish to handle
the filenames stdout, stderr, and — specially to be consistent with other tools. (See the documentation of
netsa.script.get_output_file_name for details.) Unlike most parameters, output file parameters

10 Chapter 1. netsa.script — The NetSA Scripting Framework

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file

NetSA Python Documentation, Release 1.3

never have default values, and are required by default. If an output file parameter is not required, the implication
is that if the user does not specify this argument, then this output is not produced.

In keeping with the behavior of the SiLK tools, it is an error for the user to specify an output file that already
exists. If the environment variable STLK_CLOBBER is set, this restriction is relaxed and existing output files
may be overwritten.

The mime_type argument is advisory., but it should be set to an appropriate MIME content type for the output
file. The framework will not report erroneous types, nor will it automatically convert from one type to another.
Examples:

text/plain Human readable text file.

text/csv Comma-separated-value file.

application/x-silk-flows SiLK flow data

application/x-silk-ipset SiLK ipset data

application/x—-silk-bag SiLK bag data

application/x-silk-pmap SiLK prefix map data

image/png etc. Various standard formats, many of which are listed on IANA’s website.

It is by no means necessary to provide a useful MIME type, but it is helpful to automated systems that wish to
interpret or display the output of your script.

The description argument may also be provided, with a long-form text description of the contents of this output
file. Note that description describes the contents of the file, while help describes the meaning of the command-
line argument.

get_output_file_ name (name : str)
Returns the filename for the output parameter name. Note that many SiLK tools treat the names stdout,
stderr', and ‘‘- as meaning something special. stdout and — imply the output should be written to
standard out, and stderr implies the output should be written to standard error. It is not required that you
handle these special names, but it helps with interoperability. Note that you may need to take care when passing
these filenames to SiLK command-line tools for output or input locations, for the same reason.

If youuse netsa.script.get_output_file, it will automatically handle these special filenames.
If this output file is optional, and the user has not specified a location for it, this function will return None.

get_output_f£file (name : str)
Returns an open f i 1e object for the output parameter name. The special names stdout, — are both translated
to standard output, and stderr is translated to standard error.

If you need the output file name, use netsa.script.get_output_file_name instead.
If append is True, then the file is opened for append. Otherwise it is opened for write.

add_output_dir_ param (name : str, help : str, [required=True, expert=False, description : str, mime_type :

str])
Add an output directory parameter to this script. This parameter can later be used to construct a

str filename or a Python file object using netsa.script.get_output_dir_file_name or
netsa.script.get_output_dir_ file. Unlike most parameters, output directory parameters never
have default values, and are required by default. If an output directory parameter is not required, the implication
is that if the user does not specify this argument, then this output is not produced.

See add_output_file_param for the meanings of the description and mime_type arguments.
In this context, these arguments provide default values for files created in this output direc-

tory. Each individual file can be given its own mime_type and description when using the
netsa.script.get_output_dir_file_name and netsa.script.get_output_dir_file
functions.

1.7. Producing Output 11

http://www.iana.org/assignments/media-types/
http://docs.python.org/library/functions.html#file
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file

NetSA Python Documentation, Release 1.3

get_output_dir file_name (dir_name : str, file_name : str, [description : str, mime_type : str])

Returns the path for the file named file_name in the output directory specified by the parameter dir_name. Also
lets the netsa.script system know that this output file is about to be used. If provided, the description and
mime_type arguments have meanings as described in add_output_file_ param. If these arguments are
not provided, the defaults from the call where dir_name was defined in add_output_dir_param are used.

If the output directory parameter is optional, and the user has not specified a location for it, this function will
return None.

get_output_dir file (dir_name : str, file_name : str, [description : str, mime_type : str])

Returns the an open file object for the file named file_name in the output directory specified by
the parameter dir_name. Also lets the netsa.script system know that this output file is about
to be used. If provided, the description and mime_type arguments have meanings as described in
add_output_file_param. If these arguments are not provided, the defaults from the call where dir_name
was defined in add_output_dir_param are used.

If the output dir param is optional, and the user has not specified a location for it, this function will return None.

If append is True, the file is opened for append. Otherwise, the file is opened for write.

1.8 Temporary Files

get_temp_dir file name ([file_name : str])

Return the path to a file named file_name in a temporary directory that will be cleaned up when the process
exits. If file_name is None then a new file name is created that has not been used before.

get_temp_dir file ([file_name : str, append=False])

Returns an open £ i 1 e object for the file named file_name in the script’s temporary working directory. If append
is True, the file is opened for append. Otherwise, the file is opened for write. If file_name is None then a new
file name is used that has not been used before.

get_temp_dir pipe_name (/pipe_name : str])

Returns the path to a named pipe file_name that has been created in a temporary directory that will be cleaned
up when the process exits. If file_name is None then a new file name is created that has not been used before.

1.9 Script Execution

execute (func : callable)

Executes the main function of a script. This should be called as the last line of any script, with the script’s
main function (whatever it might be named) as its only argument.

It is important that all work in the script is done within this function. The script may be loaded in such a way
that it is not executed, but only queried for metadata information. If the script does work outside of the main
function, this will cause metadata queries to be very inefficient.

12

Chapter 1. netsa.script — The NetSA Scripting Framework

http://docs.python.org/library/functions.html#file
http://docs.python.org/library/functions.html#file

CHAPTER
TWO

NETSA.SQL — SQL DATABASE
ACCESS

2.1 Overview

The normal flow of code that works with databases using the netsa . sqgl API looks like this:

from netsa.sql import =«

select_stuff = db_gquery ("""
select a, b, c
from test_table
where a + b <= :threshold
limit 10

nn u)

conn = db_connect ("nsgl-sglite:/var/tmp/test_db.sglite™)

for (a, b, c) in conn.execute(select_stuff, threshold=5):
print ("a: , b: , C: , a + b: "% (a, b, c, atb))

Alternatively:
for (a, b, c) in select_stuff (conn, threshold=5):
print ("a: , b: , C: , a + b: "% (a, b, c, ath))

First, the required queries are created as instances of the db_query class. Some developers prefer to have a separate
module containing all of the queries grouped together. Others prefer to keep the queries close to where they are used.

When the database is to be used, a connection is opened using db_connect. The query is executed using
db_connection.execute, or by calling the query directly. The result of that call is then iterated over and

the data processed.

Connections and result sets are automatically closed when garbage collected. If you need to make sure that they are
collected as early as possible, make sure the values are not kept around in the environment (for example, by assigning
None to the variable containing them when your work is complete, if the variable won’t be leaving scope for a while.)

2.2 Exceptions

exception sql_exception
Specific exceptions generated by net sa . sgl derive from this.

13

NetSA Python Documentation, Release 1.3

exception sql_no_driver_exception
This exception is raised when no driver is installed that can handle a URL opened via db_connect.

exception sql_invalid_uri_exception
This exception is raised when the URI passed to db_connect cannot be parsed.

2.3 Connecting

db_connect (uri, [user : str, password : str])
Given a database URI and an optional user and password, attempts to connect to the specified database and
return a db_connect ion subclass instance.

If a user and password are given in this call as well as in the URI, the values given in this call override the values
given in the URL

Database URIs have the form:
<scheme>://<user>:<password>@hostname:port/<path>;<param>=<value>;...?<query>#<fragment>

Various pieces can be left out in various ways. Typically, the following form is used for databases with network
addresses:

<scheme>://[user[:password]@]hostname[:port]/<dbname>|[; <parameters>]

While the following form is used for databases without network addresses, or sometimes for connections to
databases on the local host:

<scheme>:<dbname>[;user=<user>] [; password=<password>] [; <params>]

The user and password may always be given either in the network location or in the params. Values given in
the db_connect call override either of those, and values given in the network location take priority over those
given in the params.

Refer to a specific database driver for details on what URI scheme to use, and what other params or URI pieces
may be meaningful.

2.4 Connections and Result Sets

class db__connection (driver : db_driver, variants : str list)
An open database connection, returned by db_connect.

get_driver ()
Returns the db_driver used to open this connection.

clone ()
Returns a fresh open db__connection open to the same database with the same options as this connec-
tion.

execute (query_or_sql : db_query or str, [<param_name>=<param_value>, ...])
Executes the given SQL query (either a SQL string or a query compiled with db_ query) with the pro-
vided variable bindings for side effects. Returns a dbo_result result set if the query returns a result set,
an int with the number of rows affected if available, or None otherwise.

14 Chapter 2. netsa.sql — SQL Database Access

http://docs.python.org/library/functions.html#int

NetSA Python Documentation, Release 1.3

commit ()
Commits the current database transaction in progress. Note that if a db_connection closes without

commit being called, the transaction will automatically be rolled back.

rollback ()
Rolls back the current database transaction in progress. Note that if a db_connection closes without

commit being called, the transaction will automatically be rolled back.

get_variants ()
Returns which variant tags are associated with this connection.

class db_result (connection : db_connection, query : db_query, params : dict)
A database result set, which may be iterated over.

get_connection ()
Returns the db_ connection which produced this result set.

get_query ()
Returns the db_ query which was executed to produce this result set. (Note that if a string query is given

to db_connection.execute, it will automatically be wrapped in a db_query, so this is always a
db_query.)

get_params ()
Returns the dict of params which was given when this query was executed.

__iter ()
Returns an iterator over the rows of this result set. Each row returned is a t uple with one item for each

column. If there is only one column in the result set, a tuple of one column is returned. (e.g. (5,), not
just 5 if there is a single column with the value five in it.)

It is an error to attempt to iterate over a result set more than once, or multiple times at once.

2.5 Compiled Queries

class db_query (sql : st [<variant> : str; ...])
A db_query represents a “compiled” database query, which will be used one or more times to make requests.

Whenever a query is executed using the db_connection.execute method, it may be provided as either
a string or as a db_query object. If an object is used, it can represent a larger variety of possible behaviors.
For example, it might give both a “default” SQL to run for the query, but also several specific versions meant to
work with or around features of specific RDBMS products. For example:

test_query = db_qguery(

mnn

select * from blah

mmn
’

postgres="""
select x from pg_blah

nun
’

oracle="""
select rownum, * from ora_blah

nn n)

A db_query object is a callable object. If called on a connection, it will execute itself on that connection.
Specifically:

test_qgquery(conn, ...)

2.5. Compiled Queries 15

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#tuple

NetSA Python Documentation, Release 1.3

has the same effect as:

conn.execute (test_query, ...)

__call__ (self, _conn: db_connection, [<param_name>=<param_value>, ...])
Execute this db_query on the given db_ connection with parameters.

Note that the following methods are primarily of interest to driver implementors.

get_variant_sql (accepted_variants : str seq)
Given a list of accepted variant tags, returns the most appropriate SQL for this query. Specifically, this
returns the first variant SQL given in the query which is acceptable, or the default SQL if none is acceptable.

get_variant_qgmark_params (accepted_variants : str seq, params : dict)
Like get_variant_format_parms, but for the DB API 2.0 ‘format’ paramstyle (i.e. $s placehold-
ers). This also escapes any percent signs originally present in the query.

get_variant_numeric_params (accepted_variants : str seq, params : dict)
Like get_variant_format_params, but for the DB API 2.0 ‘numeric’ paramstyle (i.e. : <n> place-
holders).

get_variant_named_params (accepted_variants : str seq, params : dict)
Like get_variant_format_params, but for the DB API 2.0 ‘named’ paramstyle (i.e. :<name>
placeholders). Note that this paramstyle is the native style required by the net sa.sgl APL

get_variant_format_params (accepted_variants : str seq, params : dict)
Converts the SQL and params of this query to a form appropriate for databases that use the DB API 2.0
‘format’ paramstyle (i.e. %s placeholders). Given a list of accepted variants and a dict of params, this
returns the appropriate SQL with param placeholders converted to ‘format’ style, and a list of params
suitable for filling those placeholders.

get_variant_pyformat_ params (accepted_variants : str seq, params : dict)
Like get_variant_format_params, but for the DB API 2.0 ‘pyformat’ paramstyle (i.e.
% (<name>) s placeholders). This also escapes any percent signs originally present in the query.

2.6 Implementing a New Driver

In order to implement a new database driver, you should create a new module that implements a subclass of
db_driver,thencalls register_driver with an instance of that subclass in order to register the new driver.

Your db_driver subclass will, of course, return subclasses of db_connection and db_result specific to your
database as well. It should never be necessary to subclass db_ query—that class is meant to be a database-neutral
representation of a “compiled” query.

For most drivers, one of the get_variant_... methods of db_query should provide the query in a form that
the underlying database can easily digest.

class db_driver ()

A database driver, which holds the responsibility of deciding which database URLs it will attempt to open, and
returning db_connection objects when a connection is successfully opened.

can_handle (uri_scheme : str)
Returns True if this db_driver believes it can handle this database URI scheme.

connect (uri : str, user: str or None, password : str or None)
Returns None if this db_driver cannot handle this database URI, or a db_connection subclass
instance connected to the database if it can. The user and password parameters passed in via this call
override any values from the URI.

16

Chapter 2. netsa.sql — SQL Database Access

NetSA Python Documentation, Release 1.3

register_driver (driver : db_driver)
Registers a db_driver database driver object with the net sa. sgl module. Driver modules generally reg-
ister themselves, and this function is only of interest to driver writers.

unregister_ driver (driver : db_driver)
Removes a db_driver database driver object from the set of drivers registered with the net sa . sql module.

2.7 Experimental Connection Pooling

This version of netsa.sqgl contains experimental support for connection pooling. Connections in a pool will be
created before they’re needed and kept available for re-use. Note that since this API is still in the early stages of
development, it is very likely to change between versions of netsa-python.

db_create_pool (uri, [user : str, password : str], ...)
Given a database URI, an optional user and password, and additional parameters, creates a driver-specific con-
nection pool. Returns a db_pool from which connections can be obtained.

If a user and password (or other parameter) is given in this call as well as in the URI, the values given in this
call override the values given in the URL

See db_connect for details on database URISs.

class db_pool ()
A pool of database connections for a single specific connection specification and pool configuration. See
db_create_pool.

get_driver ()
Returns the db_driver used to open this connection.

connect ()
Returns a db_connection subclass instance from the pool, open on the database specified when the
pool was created.

class db_driver ()

create_pool (uri, user : str or None, password : str or None, ...)
Returns None if this db_driver does not support pooled connections or cannot handle this database
URI, or a db_pool subclass instance which can be used to obtain connections from a pool. The user and
password parameters and any other parameters passed in via this call override any values from the URL

2.8 Why Not DB API 2.0?

If you have experience with Python database APIs, you may be wondering why we have chosen to implement a new
API rather than simply using the standard DB API 2.0.

In short, the problem is that the standard database API isn’t really an API, but more a set of guidelines. For example,
each database driver may use a different mechanism for providing query parameters. As another example, each API
may also have different behaviors in the presence of threads.

Specifically, the sglite module uses the ‘pyformat’ param style, which allows named parameters to queries which
are passed as a dict, using Python-style formats. The sglite3 module, on the other hand, uses the ‘gmark’ param
style, where ? is used as a place-holder in queries, and the parameters are positional and passed in as a sequence.

We’ve done work to make sure that it’s simple to implement net sa . sgl-style drivers over the top of DB API 2.0-
style drivers. In fact, all of the currently deployed drivers are of this variety. The only work that has to be done for
such a driver is to start with one of the existing drivers, determine which paramstyle is being used, do any protection

2.7. Experimental Connection Pooling 17

http://www.python.org/dev/peps/pep-0249/
http://docs.python.org/library/sqlite3.html#module-sqlite3
http://www.python.org/dev/peps/pep-0249/

NetSA Python Documentation, Release 1.3

against threading issues that might be necessary, and turn the connection URI into a form that the driver you’re using
can handle.
Once that’s done, you still have the issue that different databases may require different SQL to operate—but that’s a

lot easier to handle than “some databases use named parameters and some use positional”. And, the variant system
makes it easy to put different compatibility versions of the same query together.

18 Chapter 2. netsa.sql — SQL Database Access

CHAPTER
THREE

NETSA.UTIL.SHELL — ROBUST SHELL
PIPELINES

3.1 Overview

The netsa.util.shell module provides a facility for securely and efficiently running UNIX command pipelines
from Python. To avoid text substitution attacks, it does not actually use the UNIX shell to process commands. In
addition, it runs commands directly in a way that allows easier clean-up in the case of errors.

The following standard Python library functions provide similar capabilities, but without either sufficient text substi-
tution protections or sufficient error-checking and recovery mechanisms:

¢ The os . system function

¢ The subprocess module

e The popen?2 module
Here are some examples, in increasing complexity, of the use of the run_parallel and run_collect functions:
Run a single process and wait for it to complete:

Shell: rm —-rf /tmp/test
run_parallel ("rm —-rf /tmp/test™)

Start two processes and wait for both to complete:

Shell: rm -rf /tmp/testl & rm —-rf /tmp/test2 & wait

run_parallel ("rm -rf /tmp/test_dir_1",
"rm -rf /tmp/test_dir_2")

Store the output of a command into a file:

Shell: echo test > /tmp/testout
run_parallel (["echo test", ">/tmp/testout"])

Read the input of a command from a file (and put the ouput into another file):

Shell: cat < /tmp/test > /tmp/testout
run_parallel (["</tmp/test", "cat", ">/tmp/testout"])

Append the output of a command to a file:

19

http://docs.python.org/library/os.html#os.system
http://docs.python.org/library/subprocess.html#module-subprocess
http://docs.python.org/library/popen2.html#module-popen2

NetSA Python Documentation, Release 1.3

Shell: echo test >> /tmp/testout
run_parallel (["echo test", ">>/tmp/testout"])

Pipe the output of one command into another command (and put the output into a file):

Shell: echo test | sed ’s/e/f/’ > /tmp/testout
run_parallel (["echo test", "sed ’'s/e/f/’", ">/tmp/testout"])

Run two pipelines in parallel and wait for both to complete:

Shell:

echo test | sed ’s/e/f/’ > /tmp/testout &

cat /etc/passwd | cut —-f1 -d’ |’ > /tmp/testout’ &
wait

run_parallel (["echo test", "sed ’'s/e/f/’'", ">/tmp/testout"],
["cat /etc/passwd", "cut -f1 -d’[’", ">/tmp/testout2"])

Run a single pipeline and collect the output and error output in the variables out and err:

Shell: foo='‘cat /etc/passwd | cut -f1 -d’|’"
(foo, foo_err) = run_collect ("cat /etc/passwd", "cut —-fl1 -d’|’"")

The following examples are more complicated, and require the use of the long forms of command and pipeline
specifications. (All of the examples above have used the short-hand forms.) You should read the documentation for
command and pipeline to see how the long forms and short-hand forms are related.

Run a pipeline, collect standard output of the pipeline to one file, and append standard error from all of the commands
to another file:

Shell: (gen-data | cut —-f1 -d’|’ > /tmp/testout) 2>> /tmp/testlog
run_parallel (pipeline ("gen-data", "cut -f1 -d’|’", ">/tmp/testout",
stderr="/tmp/testlog", stderr_append=True))

Run a pipeline, collect standard output of the pipeline to one file, and collect standard error from one command to
another file:

Shell: (gen-data 2> /tmp/testlog) | cut —-f1 -d’|’ > /tmp/testout
run_parallel ([command ("gen-data", stderr="/tmp/testlog"),
"cut -f1 -d’|’", ">/tmp/testout"])

Run a pipeline, collect standard output of the pipeline to a file, and ignore the potentially non-zero exit status of the
gen-data command:

Shell: (gen—-data | cut —-f1 -d’ |’ > /tmp/testout) || true
run_parallel ([command ("gen—-data", ignore_exit_status=True),
"cut -f1 -d’|’", ">/tmp/testout"])

Use long pipelines to process data using multiple named pipes:

Shell:
mkfifo /tmp/fifol
mkfifo /tmp/fifo2
tee /tmp/fifol < /etc/passwd | cut —-f1 -d’ |’ | sort > /tmp/outl &
tee /tmp/fifo2 < /tmp/fifol | cut —-f2 -d’|’ | sort > /tmp/out2 &

#
#
#
#
#
cut -f3 -d’ |’ < /tmp/fifo2 | sort | uniq -c > /tmp/out3 &

20 Chapter 3. netsa.util.shell — Robust Shell Pipelines

NetSA Python Documentation, Release 1.3

wait
run_parallel ("mkfifo /tmp/fifol",
"mkfifo /tmp/fifo2")
run_parallel (
["</etc/passwd", "tee /tmp/fifol", "cut -f1 -4’ |’'", ">/tmp/outl"],
["</tmp/fifol", "tee /tmp/fifo2", "cut -f2 -4’ |’'", ">/tmp/out2"],
["</tmp/fifo2", "cut -f3 -d’|’", "sort", "unig -c", ">/tmp/out3"])

3.2 Exceptions

exception PipelineException
This exception represents a failure to process a pipeline in either run_parallel or run_collect. It can
be triggered by any of the commands being run by the function failing (either because the file was not found
or because the command’s exit status was unacceptable.) The message contains a summary of the status of all
of the sub-commands at the time the problem was discovered, including stderr output for each sub-command if
available.

3.3 Building Commands and Pipelines

command (<command spec>, [stderr : str or file, stderr_append=False, ignore_exit_status=False, ig-

nore_exit_statuses : int seq])
Interprets the arguments as a “command specification”, and returns that specification as a value.

If there is only a single argument and it is a command, then a new command is returned with the options
provided by this call. For example:

new_command = command (old_command, ignore_exit_status=True)

If there is only a single argument and it is a st r, the string is parsed as if it were a simple shell command. (i.e.
respecting single and double quotation marks, backslashes, etc.) For example:

new_command = command("ls /etc")

If there is only a single argument and itis a 1 ist or a tuple, interpret it as being the argument vector for the
command (with the first argument being the command to be executed.) For example:

new_command = command(["1ls", "/etc"])

If there are multiple arguments, each argument is taken as being one element of the argument vector, with the
first bring the command to be executed. For example:

new_command = command ("ls", "/etc")

The following keyword arguments may be given as options to a command specification:
stderr Filename (str) or open £ile object of destination for stderr.

stderr_append True if stderr should be opened for append. Does nothing if stderr is already an
open file.

ignore_exit_status If True, then the exit status for this command is completely ignored.

3.2. Exceptions 21

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file

NetSA Python Documentation, Release 1.3

ignore_exit_statuses A list of numeric exit statuses that should not be considered errors when they
are encountered.

In addition, these options may be “handed down” from the pipeline call, or from run_parallel or
run_collect. If so, then options given locally to the command take precedence.

Example: Define a command spec using a single string:

c = command("ls -1R /tmp/foo™)

Example: Define a command as the same as an old command with different options:
d = command(c, ignore_exit_status=True)

Example: Define a command using a list of strings:

e = command(["1s", "-1R", "/tmp/foo"])

Example: Define a command using individual string arguments:

f = command("1s", "-1R", "/tmp/foo")

Short-hand Form:

Inthe pipeline, run_parallel, and run_collect functions, commands may be given in a short-hand
form where convenient. The short-hand form of a command is a single string. Here are some examples:

"ls —-1R" => command(["1ls", "-1R"])

"echo test test a b" => command(["echo", "test", "test", "a", "b"])
"echo "test test’ a" => command(["echo", "test test", "a"l)

"'weird program’" => command(["weird program"])

There is no way to associate options with a short-hand command. If you wish to redirect error output or ignore
exit statuses, you will need to use the long form.

Variable Expansion:

When commands are executed, variable expansion is performed. The expansions are provided by the argument
vars to run_parallel or run_collect. Note that commands are split into arguments before this expan-
sion occurs, which is a security measure. This means that no matter what whitespace or punctuation is in an
expansion, it can’t change the sense of the command. The down side of that is that on occasions when you
would like to add multiple arguments to a command, you must construct the command using the list syntax.

Expansion variable references are placed using the Python String formatting operations.

Here is an example substitution, showing how % (target) s becomes a single argument before the subsitution
occurs.

("ls —-1R % (target)s", vars={’'target’: bl ah"’}) =>
("ls", "-1R", "% (target)s", vars={’'target’: ’'bl ah"’}) =>
("lS", "71R", Ibl ah nrs)

If the value to be substituted implements the method get_argument_1ist, which takes no arguments and
returns a list of strings, then those strings are included as multiple separate arguments. This is an expert tech-
nique for extending commands at call-time for use internal to APIs.

("ls -1R % (targets)s", vars={’targets’: special_container}) =>
("ls", "-1R", "targetl", "target2", ...)

22

Chapter 3. netsa.util.shell — Robust Shell Pipelines

http://docs.python.org/library/stdtypes.html#string-formatting

NetSA Python Documentation, Release 1.3

Functions as Commands:

In addition to executable programs, Python functions may also be used as commands. This is useful if you wish
to do processing of data in a sub-process as part of a pipeline without needing to have auxilliary Python script
files. However, this is an advanced technique and you should fully understand the subtleties before making use
of it.

When a Python function is used as a command, the process will fork as normal in preparation for executing a
new command. However, instead of exec-ing a new executable, the Python function is called. When the Python
function completes (either successfully or unsuccessfully), the child process exits immediately.

If you intend to use this feature, be sure that you know how the lifecycles of various objects will behave when
the Python interpreter is forked and two copies are running at once.

The command function is called with vars (as given to run_parallel or run_collect) as its first argu-
ment, and the remainder of argv from calling command as its remaining arguments.

pipeline (<pipeline spec>, [stdin : str or file, stdout : str or file, stdout_append=False, ...])
Interprets the arguments as a “pipeline specification”, and returns that specification as a value.

If there is only a single argument and it is a pipeline, then a new pipeline is returned with the options
provided by this call. For example:

new_pipeline = pipeline(old_pipeline, stdout="/tmp/newfile")

If there is only a single argument and itis a 1ist or a tuple, interpret it as being a list of commands and I/O
redirection short-hands to run in the pipeline. For example:

new_pipeline = pipeline(["1ls /etc", "tac"])

If there are multiple arguments, these arguments are treated as a list of commands and I/O redirection short-
hands (as if they were passed as a single list.) For example:

new_pipeline = pipeline("ls /etc", "tac")

The following keyword arguments may be given as options to a pipeline specification:
stdin Filename (st r) or open £ile object of source for stdin.
stdout Filename (st r) or open £ile object of destination for stdout.

stdout_append True if stdout should be opened for append. Does nothing if stdout is already an
open file.

Because these options are so common, they may also be given in short-hand form. If the first command in the
pipeline is a string starting with <, the remainder of the string is intepreted as a filename for stdin. If the last
command in the pipeline is a string starting with > or >>, the remainder of the string is interpreted as a filename
for stdout (and if >> was used, it is opened for append.)

In addition, any unrecognized keyword arguments will be provided as defaults for any command specifications
used in this pipeline. (So, for example, if you give the ignore_exit_status option to pipeline, all of the
commands in that pipeline will use the same value of ignore_exit_status unless they have their own overriding
setting.)

Example: Define a pipeline using a list of commands:
a = pipeline(command("ls —1R /tmp/foo"),

command ("sort"),
stdout="/tmp/testout™)

3.3. Building Commands and Pipelines 23

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#file

NetSA Python Documentation, Release 1.3

Example: Define the same pipeline using the short-hand form of commands, and the shorthand method of setting
stdout:

b = pipeline("ls -1R /tmp/foo",
"sort",
">/tmp/testout™)

Example: Define the same pipeline using a list instead of multiple arguments:

c = pipeline(["1ls -1R /tmp/foo",
"SOrt",
">/tmp/testout"])

Example: Define a new pipeline which is the same as an old pipeline but with different options:

d = pipeline(c, stdout="/tmp/newout")

Short-hand Form:

In the run_parallel command, pipelines may be given in a short-hand form where convenient. The short-
hand form of a pipeline is a list of commands and I/O redirection short-hands. Here are some examples:

["1s /tmp/die", "xargs rm"] => pipeline(["ls /tmp/die", "xargs rm"])
["</tmp/testin", "sort", ">/tmp/testsort"] =>
pipeline (["sort"], stdin="/tmp/testin", stdout="/tmp/testsort")

Note that although you can set stdin, stdout, and stdout_append using the short-hand form (by using the I/O
redirection strings at the start and end of the list), you cannot set these options to open £ile objects, only to
filenames. You also set other options to be passed down to the individual commands.

Variable Expansion:

As in command, pipelines have variable expansion. Most variable expansion happens inside the actual com-
mands in the pipeline. However, variable expansion also occurs in filenames provided for the stdin and stdout
options. For example:

pipeline("1ls —-1R", "> ")
pipeline("1ls —-1R", stdout=" "

3.4 Running Pipelines

run_parallel (<pipeline spec>, ..., [vars : dict, ...])
Runs a series of commands (as specified by the arguments provided) by forking and establishing pipes between
commands. Raises PipelineException and kills off all remaining subprocesses if any one command fails.

Each argument is passed to the pipeline function to create a new pipeline, which allows the short-hand form
of pipelines (as 11ist short-hands) to be used.

The following keyword arguments may be given as options to run_parallel:

vars A dictionary of variable substitutions to make in the command and pipeline specifications
in this run_parallel call.

24 Chapter 3. netsa.util.shell — Robust Shell Pipelines

http://docs.python.org/library/functions.html#file
http://docs.python.org/library/functions.html#list

NetSA Python Documentation, Release 1.3

Additional keyword arguments will be passed down as default values to the pipeline and command specifi-
cations making up this run_parallel call.

The run_parallel function returns the list of exit codes of the processes in each pipeline as a list of lists.
Each list corresponds to a pipeline, in the order in which they were passed into the function. Each element
represents a process in the pipeline, in the order they were defined in the pipeline. If a process is not run (e.g.,
because a process preceding it in the pipeline fails), the exit status will be None.

Example: Run three mkdirs in parallel and fail if any of them fails:
run_parallel ("mkdir a", "mkdir b", "mkdir c")

Example: Make a fifo, then afterwards, use it to do some work. (Try making a typo in here and watch it kill
everything off instead of hanging forever.)

run_parallel ("mkfifo test.fifo")

run_parallel (["cat /etc/passwd", "sort -r", "cut -fl -d:", ">%(f)s"],
["cat %(f)s", "sed -e 's/a/b/g’'", ">%(f2)s"],
vars={'f’: ’'test.fifo’, "f2’': ’'test.

Example: run two pipelines in parallel, then investigate their processes’ exit statuses:

exits = run_parallel(["ls -1", "grep ~d"],

["cat /etc/passwd", "sort -r", "cut -fl1 -d:"])
If all complete successfully, exits will be:
([0, 0], [0, 0, 0]]

run_collect (<command spec>, ..., [vars : dict, ...])
Runs a series of commands specifying a single pipeline by forking and establishing pipes between commands.
The output of the final command is collected and returned in the result. stderr across all commands is returned
in the result. The final result is a tuple (stdout, stderr)

Raises PipelineException and kills off all remaining subprocesses if any one command fails.

The arguments are passed as arguments to a single call of the pipeline function to create a pipeline specifi-
cation. That is: each argument is a command specification. Note that this is not the same as run_parallel,
which interprets its arguments as multiple pipel ine specifications.

You can also redirect stderr independently for each command if needed, allowing you to send some stderr to
/dev/null or another destination instead of collecting it.

Example: Reverse sort the output of 1s -1 and store the output and error in the variables a_stdout and a_stderr:

Reverse sort the output of 1s -1
(a_stdout, a_stderr) = run_collect ("ls -1", "sort -r")

Example: Do the same as the above, but run 1s -1 on a named directory instead of the current working
directory:

The same with a named directory
(b_stdout, b_stderr) = run_collect ("ls -1 ", "sort -r",
vars={’dir’: ’"some_directory’})

Example: The following does not collect output, but instead writes it to a file. If there were any error output, it
would be returned in the variable c_stderr:

(empty_stdout, c_stderr) = run_collect("ls -1", "sort -r", ">test.out")

3.4. Running Pipelines 25

NetSA Python Documentation, Release 1.3

run_collect_files (<command spec>, ..., [vars : dict, ...])

Runs a series of commands like run_collect, but returns open file objects for stdout and stderr instead of
strings.

Example: Iterate over the linesof 1s -1 | sort -r and print them out with line numbers:

(f_stdout, f_stderr) = run_collect_files("ls -1", "sort -r'")
for (line_no, line) in enumerate (f_stdout) :
print (" " % (line_no, line[:-1]))

26

Chapter 3. netsa.util.shell — Robust Shell Pipelines

CHAPTER
FOUR

DATA MANIPULATION

4.1 netsa.data.countries — Country and Region Codes

Definitions of country and region names and codes as defined by ISO 3166-1 and the UN Statistics Division. The
information in this module is current as of January 2010.

get_area_numeric (code : int or str)
Given a country or region code as one of the following:

*String containing ISO 3166-1 alpha-2 code
*String containing ISO 3166-1 alpha-3 code
String or integer containing ISO 3166-1 numeric code
*String containing DNS top-level domain alpha-2 code
*String or integer containing UN Statistics Division numeric region code
Returns the appropriate ISO 3166-1 or UN Statistics Division numeric code as an integer.

Note that some regions and other special items that are not defined by ISO 3166-1 or the UN Statistics Division
are encoded as ISO 3166-1 user-assigned code elements.

Raises KeyError if the code is unrecognized.

get_area_name (code : int or str)
Given a country or region code as a string or integer, returns the name for the country or region.

Raises KeyError if the country or region code is unrecognized.

get_area_tlds (code : int or str)
Given a country or region code as a string or integer, returns a list of zero or more DNS top-level domains for
that country or region.

Raises KeyError if the country or region code is unrecognized.

get_country_numeric (code : int or str)
Given a country code as a string or integer, returns the ISO 3166-1 numeric code for the country.

Raises KeyError if the country code is unrecognized.

get_country_ name (code : int or str)
Given a country code as a string or integer, returns the name for the country.

Raises KeyError if the country code is unrecognized.

27

http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError

NetSA Python Documentation, Release 1.3

get_country_alpha2 (code : int or str)
Given a country code as a string or integer, returns the ISO 3166-1 alpha-2 code for the country, or None if that
is not possible.

Raises KeyError if the country code is unrecognized.

get_country_alpha3 (code : int or str)
Given a country code as a string or integer, returns the ISO 3166-1 alpha-3 code for the country, or None if that
is not possible.

Raises KeyError if the country code is unrecognized.

get_country_tlds (code : int or str)
Given a country code as a string or integer, returns a list of zero or moreDNS top-level domains for that country.

Raises KeyError if the country code is unrecognized.

iter countries()
Returns an iterator which yields all known ISO 3166-1 numeric country codes as integers, including user-
assigned code elements in use.

get_region_numeric (code : int or str)
Given a UN Statistics Division region code as a string or integer, returns the code as an integer.

Raises KeyError if the region code is unrecognized.

get_region_name (code : int or str)
Given a region code as a string or integer, returns the name for the region.

Raises KeyError if the region code is unrecognized.

get_region_t1lds (code : int or str)
Given a region code as a string or integer, returns a list of zero or more DNS top-level domains for that region.

Raises KeyError if the region code is unrecognized.

iter_regions ()
Returns an iterator which yields all top-level UN Statistics Division numeric region codes as integers. This
includes Africa, the Americas, Asia, Europe, Oceania, and Other.

iter_ region_subregions (code : int or str)
Given the code for a containing region, returns an iterator which yields all second-level UN Statistics Division
numeric region codes as integers.

Raises KeyError if the region code is unrecognized.

iter_ region_countries (code : int or str)
Given the code for a containing region, returns an iterator which yields as integers all ISO 3166-1 numeric
country codes that are part of that region.

4.2 netsa.data.format — Formatting Data for Output

The netsa.data.format module contains functions useful for formatting data to be displayed in human-readable
output.

4.2.1 Numbers

num_fixed (value : num, [units : str, dec_fig=2, thousands_sep : str])
Format value using a fixed number of figures after the decimal point. (e.g. “1234” is formatted as “1234.00”)

28 Chapter 4. Data Manipulation

http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError
http://docs.python.org/library/exceptions.html#exceptions.KeyError

NetSA Python Documentation, Release 1.3

If units is provided, this unit of measurement is included in the output. dec_fig specifies the number of figures
after the decimal point.

If thousands_sep is given, it is used to separate each group of three digits to the left of the decimal point.

Examples:

>>> num_fixed (1234, ’'m’)

71234.00m’

>>> num_fixed (1234, 'm’, dec_fig=4)

71234.0000m’

>>> num_fixed(1234.5678, ’'m’, dec_£fig=0)

71235m’

>>> num_fixed (123456789, dec_fig=3, thousands_sep=",")
"123,456,789.000"

num_exponent (value : num, [units : str, sig_fig=3])
Format value using exponential notation. (i.e. “1234” becomes “1.23e+3” for three significant digits, or
“1.234e+4” for four significant digits.) If units is provided, this unit of measurement is included in the out-
put. sig_fig is the number of significant figures to display in the formatted result.

Examples:

>>> num_exponent (1234, ’'m’)

"1.23e+3m’

>>> num_exponent (1234, ’'m’, sig_fig=4)
"1.234e+3m’

>>> num_exponent (1234.5678, 'm’, sig_fig=6)
’1.23457e+3m’

>>> num_exponent (123456789, sig_fig=2)
"1.2e+8’

>>> num_exponent (123456, sig_fig=6)
"1.23456e+5’

num_prefix (value : num, [units : str, sig_fig=3, use_binary=False, thousands_sep : str])
Format value using SI prefix notation. (e.g. 1k is 1000) If units is provided, this unit of measurement is included
in the output. sig_fig is the number of significant figures to display in the formatted result.

If use_binary is True, then SI binary prefixes are used (e.g. 1Ki is 1024). Note that there are no binary prefixes
for negative exponents, so standard prefixes are always used for such cases.

For very large or very small values, exponential notation (e.g. “le-30”) is used.
If thousands_sep is given, it is used to separate each group of three digits to the left of the decimal point.

Examples:

>>> num_prefix (1024, 'b’")

"1.02kb’

>>> num_prefix (1024, ’'b’, use_binary=True)
"1.00Kib’

>>> num_prefix (12345, ’'b’, sig_fig=2)
"12kb’

>>> num_prefix (12345, 'b’, sig_fig=7)

712345.00b"

>>> num_prefix (12345678901234567890, ’'b’")

"12.3EDb’

>>> num_prefix (12345678901234567890, ’"b’, sig_£fig=7)
712345.68Pb’

>>> num_prefix (1234567890123456789012345, ’s’)

4.2. netsa.data.format — Formatting Data for Output 29

NetSA Python Documentation, Release 1.3

"1.23e+24s’

>>> num_prefix (0.001, ’"s’)

71.00ms”

>>> num_prefix (0.001, "s’, use_binary=True)
71.00ms’

4.2.2 Dates and Times

Dates and times may be formatted to a variety of precisions. The formatting functions support the following precisions,
except where otherwise noted: DATETIME_YEAR, DATETIME_MONTH, DATETIME_DAY, DATETIME_HOUR,
DATETIME_MINUTE, DATETIME_SECOND, DATETIME_MSEC, and DATETIME_USEC

datetime_silk (value : datetime, [precision=DATETIME_SECOND])
Format value as a SiLK format date and time (YYYY/MM/DDTHH:MM: SS. SSS). Implicitly coerces the time
into UTC.

precision is the amount of precision that should be included in the output.

For a more general way to round times, see netsa.data.times.bin_datetime. See also
datetime_silk_houranddatetime_silk_day for the most common ways to format incomplete dates
in SiLK format.

Examples:

>>> t netsa.data.times.make_datetime ("2010-02-03T04:05:06.007™")
>>> datetime_silk (t)

72010/02/03T04:05:06"

>>> datetime_silk (t, precision=DATETIME_YEAR)
r2010"

>>> datetime_silk (t, precision=DATETIME_MONTH)
r2010/02"

>>> datetime_silk (t, precision=DATETIME_DAY)
72010/02/03"

>>> datetime_silk (t, precision=DATETIME_HOUR)
r2010/02/03T04"

>>> datetime_silk (t, precision=DATETIME_MINUTE)
72010/02/03T04:05"

>>> datetime_silk (t, precision=DATETIME_SECOND)
72010/02/03T04:05:06"

>>> datetime_silk (t, precision=DATETIME_MSEC)
"2010/02/03T04:05:06.007"

>>> datetime_silk (t, precision=DATETIME_USEC)
72010/02/03T04:05:06.007000"

datetime silk_hour (value : datetime)
Format value as a SiLK format datetime to the precision of an hour (YYYY/MM/DDTHH). Implicitly coerces
time into UTC. This is shorthand for datetime_silk (value, precision=DATETIME_HOUR).

Example:

>>> t netsa.data.times.make_datetime ("2010-02-03T04:05:06.007")
>>> datetime_silk_hour (t)
r2010/02/03T04"

datetime_silk_day (v : datetime)
Format value as a SiLK format datetime to the precision of a day (YYYY/MM/DD). Implicitly coerces time into
UTC. This is shorthand for datetime_silk (value, precision=DATETIME_DAY).

30 Chapter 4. Data Manipulation

NetSA Python Documentation, Release 1.3

Example:

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007")
>>> datetime_silk_day (t)
r2010/02/03"

datetime_iso (value : datetime, [precision=DATETIME_SECOND])
Format value as an ISO 8601 extended format date and time (YYYY/MM/DDTHH:MM:SS.SSSSSS[TZ]).
Includes timezone offset unless the value has no timezone or the value’s timezone is UTC.

precision is the amount of precision that should be included in the output.

For a more general way to round times, see netsa.data.times.bin datetime. See also
datetime_silk_hourand datetime_silk_day for the most common ways to format incomplete dates
in SiLK format.

Examples:

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007008")
>>> datetime_iso (t)

"2010-02-03T04:05:06"

>>> datetime_iso(t, precision=DATETIME_YEAR)
72010’

>>> datetime_iso(t, precision=DATETIME_MONTH)
72010-02"

>>> datetime_iso(t, precision=DATETIME_DAY)
"2010-02-03"

>>> datetime_iso(t, precision=DATETIME_HOUR)
r2010-02-03T04"

>>> datetime_iso(t, precision=DATETIME_MINUTE)
72010-02-03T04:05"

>>> datetime_iso(t, precision=DATETIME_SECOND)
72010-02-03T04:05:06"

>>> datetime_iso(t, precision=DATETIME_MSEC)
72010-02-03T04:05:06.007"

>>> datetime_iso(t, precision=DATETIME_USEC)
72010-02-03T04:05:06.007008"

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007008+09:10", utc_only=False)
>>> datetime_iso (t)
72010-02-03T04:05:06+09:10"

datetime_iso_day (value : datetime)
Format value as an ISO 8601 extended format date to the precision of a day (YYYY-MM-DD[TZ]). In-
cludes timezone offset unless the value has no timezone or the value’s timezone is UTC. This is shorthand
for datetime_iso (value, precision=DATETIME_DAY).

Example:

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007")

>>> datetime_iso_day (t)

r2010-02-03"

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007+03:00", utc_only=False)
>>> datetime_iso_day (t)

72010-02-03+03:00"

datetime_iso_basic (value : datetime, [precision=DATETIME_SECOND])
Format value as an ISO 8601 basic (compact) format date and time (YYYYMMDDTHHMMSS.SSSSSS[TZ]).
Includes timezone offset unless the value has no timezone or the value’s timezone is UTC.

4.2. netsa.data.format — Formatting Data for Output 31

NetSA Python Documentation, Release 1.3

precision is the amount of precision that should be included in the output. Note that in accordance with the
ISO 8601 specification, this format does not support the DATETIME_MONTH precision, because YYYYMM and
YYMMDD would be potentially ambiguous.

For a more general way to round times, see netsa.data.times.bin_datetime. See also
datetime_silk_houranddatetime_silk_day for the most common ways to format incomplete dates
in SiLK format.

Examples:

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007008")
>>> datetime_iso_basic(t)

720100203T040506"

>>> datetime_iso_basic(t, precision=DATETIME_YEAR)

r20107

>>> datetime_iso_basic(t, precision=DATETIME_DAY)

720100203

>>> datetime_iso_basic(t, precision=DATETIME_HOUR)

720100203T04"

>>> datetime_iso_basic(t, precision=DATETIME_MINUTE)

720100203T0405"

>>> datetime_iso_basic(t, precision=DATETIME_SECOND)
720100203T040506"

>>> datetime_iso_basic(t, precision=DATETIME_MSEC)
720100203T040506.007"

>>> datetime_iso_basic(t, precision=DATETIME_USEC)
720100203T040506.007008"

>>> t = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007008+09:10", utc_only=False)
>>> datetime_iso_basic(t)

720100203T040506+0910"

timedelta_iso (value : timedelta)
Formata datetime.timedelta object as a strin ISO 8601 duration format, minus ‘year’ and ‘month’ des-
ignators (P [n]DT [n]H[n]M[n]S). Fractional seconds will represented using decimal notation in the seconds
field.

Note that conversions between units are precise and do not take into account any calendrical context. In partic-
ular, a day is exactly 24*3600 seconds, just like datetime.timedelta uses.

If you apply the resulting timedelta to a datetime and the interval happens to include something like leap seconds
adjust your expectations accordingly.

Since datetime.timedelta has no internal representation of months or years, these units are never in-
cluded in the result.

Examples:

>>> t]l = netsa.data.times.make_datetime ("2010-02-03T04:05:06.007008™)
>>> t2 = netsa.data.times.make_datetime ("2010-02-04T05:06:07.008009™)
>>> t3 = netsa.data.times.make_datetime ("2010-02-03T04:06:06.008009™)
>>> dl = t2 - tl

>>> d2 = t3 - tl

>>> timedelta_iso (dl)

>>> /PIDT1HIM1.001001S”

>>> timedelta_iso (d2)

>>> /PTIM0.001001S’

32 Chapter 4. Data Manipulation

http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.timedelta

NetSA Python Documentation, Release 1.3

4.3 netsa.data.nice — “Nice” Numbers for Chart Bounds

A set of functions to produce ranges of aesthetically-pleasing numbers that have the specified length and include the
specified range. Functions are provided for producing nice numeric and time-based ranges.

nice_ticks (lo: num, hi : num, [ticks=5, inside=False])
Find ‘nice’ places to put ficks tick marks for numeric data spanning from lo to hi. If inside is True, then the
nice range will be contained within the input range. If inside is False, then the nice range will contain the
input range. To find nice numbers for time data, use nice_time_ticks.

The result is a tuple containing the minimum value of the nice range, the maximum value of the nice range, and
an iterator over the tick marks.

See alsonice_ticks_seq.

nice_ticks_seq (lo: num, hi : num, [ticks=5, inside=False])
A convenience wrapper of nice_ticks to return the nice range as a sequence.

nice_time_ticks (lo : datetime, hi : datetime, [ticks=5, inside=False, as_datetime=True])
Find ‘nice’ places to put ficks tick marks for time data spanning from lo to hi. If inside is True, then the nice
range will be contained within the input range. If inside is False, then the nice range will contain the input
range. To find nice numbers for numerical data, use nice_ticks.

The result is a tuple containing the minimum value of the nice range, the maximum value of the nice range,
and an iterator over the ticks marks. If as_datetime is True, the result values will be datetime.datetime
objects. Otherwise, the result values will be numbers of seconds since UNIX epoch. Regardless, the return
value is expressed in UTC.

See alsonice_time_ticks_seq.

nice_time_ticks_seq (lo : datetime, hi : datetime, [ticks=35, inside=False, as_datetime=True])
A convenience wrapper of nice_time_ticks to return the nice range as a sequence.

4.4 netsa.data.times — Time and Date Manipulation

make_datetime (v : num or str or datetime or mxDateTime, [utc_only=True])
Produces a datetime.datet ime object from a number (seconds from UNIX epoch), a string (in ISO format,
SiLK format, or old SiLK format), or a datetime.datet ime object. If utc_only is True, coerces the result
to be in the UTC time zone.

If the mxDateTime library is installed, this function also accepts mxDateTime objects.

bin_datetime (dr: timedelta, t : datetime, [z=UNIX_EPOCH : datetime])
Returns anew datet ime.datet ime object which is the floor of the datetime.datet ime ¢t in a df-sized
bin. For example:

bin_datetime (timedelta (minutes=5), t)

will return the beginning of a five-minute bin containing the time ¢. If you have very specific requirements, you
can replace the origin point for binning (z) with a time of your choice. By default, the UNIX epoch is used,
which is appropriate for most uses.

make_timedelta (v : timedelta or str)
Produces a datetime.timedelta object from a string (in ISO 8601 duration format) or a
datetime.timedelta object.

Since datetime.timedelta objects do not internally support units larger than ‘days’, ISO 8601 strings
containing month or year designations are discouraged. If these units are encountered in the string, however,

4.3. netsa.data.nice — “Nice” Numbers for Chart Bounds 33

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://www.egenix.com/products/python/mxBase/mxDateTime/
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.timedelta

NetSA Python Documentation, Release 1.3

they converted to days using a precise formula. This is an exact conversion that does not take into account any
calendrical context. If you apply the result to a datetime, and the interval happens to include leapseconds, or
if you expect to land on the same day of the month while adding ‘months’ or ‘years’, adjust your expectations
accordingly.

Example of ISO 8601: ‘PIDTIHIMI1S’

This translates as a period of ‘1 day’ with time offset of ‘1 hour, 1 minute, and 1 second’. Fields are optional,
the ‘P’ is required, as is the ‘T’ if using any units smaller than a day. A zero-valued timedelta can be represented
as ‘POD’.

divmod timedelta (n: timedelta, d : timedelta)

Given two datet ime.timedelta objects, return the number of times the second one (denominator) fits into
the first one (numerator), along with any remainder expressed as another timedelta.

4.4.1 Date Snappers

class DateSnapper (size : timedelta, [epoch=UNIX_EPOCH : datetime])

Class for date bin manipulations

date_aligned (date)
Tests whether or not the provided date is the beginning datetime.datetime for the containing time
bin.

See make_datet ime for more detail on acceptable formats for date descriptors.

date_bin (date)
Returns a datetime.datet ime object representing the beginning of the date bin containing the pro-
vided date (‘snapping’ the date into place)

See make_datet ime for more detail on acceptable formats for date descriptors.

date_bin_end (date)
Returns a datetime.datet ime object representing the last date of the date bin which contains the
provided date.

See make_datetime for more detail on acceptable formats for date descriptors.

date_binner (dates : date seq)
Given a list of datetimes, returns an iterator which produces tuples containing two datetime objects for
each provided datetime. The first value of the tuple is the beginning of the date bin containing the datetime
in question and the second value is the original datetime.

See make_datet ime for more detail on acceptable formats for datetime descriptors.

date_clumper (date_ranges : seq)
Given a list of date ranges, return a list of date bins that intersect the union of the given date ranges. Each
date range in the provided list can be a single datetime descriptor or a tuple representing a beginning and
end datetime for the range.

See make_datet ime for more detail on acceptable formats for date descriptors.

date_sequencer (date_list : date seq)
Given a list of datetimes, returns an iterator which produces tuples containing two datetime objects. The
first value of the tuple is the begining of the date bin and the second value is the original datetime. Both bins
and datetimes will be repeated where necessary to fill in gaps not present in the original list of datetimes.

If, for example, the span between each successive datetime in the provided list is smaller than the defined
bin size, the same bin will be returned for each datetime residing in that bin. (An example of this would
be a bin size of 7 days and a list of daily dates — the same bin would be returned for each week of dates
within that bin).

34

Chapter 4. Data Manipulation

http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime

NetSA Python Documentation, Release 1.3

If, on the other hand, the span between successive datetimes in the provided list is larger than the defined
bin size, each provided date will be repeatly returned with each bin that exists between the provided
datetimes. (An example of this would be a bin size of 7 days and a list of monthly dates — each monthly
date would be succesively returned with the 4 (or so) bins touched by that month)

See make_datet ime for more detail on acceptable formats for date descriptors.

next_date bin (date)
Returns a datetime.datetime object representing the beginning of the date bin following the date
bin in which the given date resides.

See make_datet ime for more detail on acceptable formats for date descriptors.

prior_date_bin (date)
Returns a datetime.datet ime object representing the beginning of the date bin prior to the date bin
in which the given date resides.

See make_datet ime for more detail on acceptable formats for date descriptors.

today_bin ()
Returns a datet ime . datet ime object representing the beginning of the date bin containing the current
date.

dow_day_snapper (size : int, [dow=0])
Given an integer size in days and an integer day-of-the-week, returns a :class:DateSnapper object anchored
on the first occurring instance of that DOW after the given epoch, which defaults to the UNIX epoch. Monday
is the Oth DOW. DOW values are modulo 7, so the 7th DOW would also represent Monday.

4.4. netsa.data.times — Time and Date Manipulation 35

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime

NetSA Python Documentation, Release 1.3

36

Chapter 4. Data Manipulation

CHAPTER
FIVE

MISCELLANEOUS FACILITIES

5.1 netsa.files — File and Path Manipulation

The routines in net sa . files are intended to help with manipulation of files in the filesystem as well as pathnames.

5.1.1 Paths

relpath (p : str;, base : str)
Given a target path along with a reference path, return the relative path from the target to the reference.

This is a logical operation that does not consult the physical filesystem.
os.path.relpath in Python 2.6 adds something similar to this.

is_relpath (p : sty base : str)
Given a target path along with a base reference path, return whether or not the base path subsumes the target
path.

This is a logical operation that does not consult the physical filesystem.

5.1.2 Directory-based Locking

exception DirLockBlock
Raised when an attempt to lock a directory is blocked for too long a time by another process holding the lock.

class DirLocker (name : str;, [dir : str, seize=False, debug=False])
Provides cheap cross-process locking via mkdir/rmdir. name is the token identifying the application group.
dir optionally specifies the directory in which to establish the lock (defaults to * /var/tmp’ or some sensible
temp dir name). If seize is True and the requested lock appears to have been orphaned, a new lock is established
and the old lock debris is removed.

This is not an infallible locking solution. This is advisory locking. It is possible to have an orphaned lock or a
ghosted lock.

For simple scenarios such as avoiding long-running cron jobs from trampling over one another, it’s probably
sufficient.

See also netsa.tools.service.check_pidfile.

37

http://docs.python.org/library/os.path.html#os.path.relpath

NetSA Python Documentation, Release 1.3

5.1.3 Garbage Collected Temporary Directories

exception LocalTmpDirError
Raised when an unrecoverable error occurs within Local TmpDir.

class LocalTmpDir (/dir : str, prefix="tmp’, create=True, verbose=False, autodelete=True])
Provides ephemeral temporary directories, similar to tempfile.NamedTemporaryFile. The resulting
directory and all of its contents will be unlinked when the object goes out of scope.

The parameter prefix is passed as the prefix parameter to tempfile.NamedTemporaryFile when tempo-
rary files are created within the temporary directory.

The parameter create controls whether the temporary directory is actually created. If you want to create the
directory manually, you can use the method assert_dir.

The parameter verbose controls whether status messages (such as creation/deletion of files and dirs) are printed
to stderr.

The parameter autodelete controls whether the temporary directory, and all its contents, are deleted once the
LocalTmpDir object goes out of scope. (mostly useful for debugging)

assert_dir ()
Checks to see if this temp dir exists and creates it if not. Normally this happens during object creation.

prefix ()
Returns the value of ‘prefix’ that is passed to tempfile.NamedTemporaryFile.

tmp_file ()
Returns a tempfile.NamedTemporaryFile object within within this temp dir.

tmp_filename ()
Returns a new temporary filename within this temp dir.

tmp_pipe ()
Returns the filename of a new named pipe within within this temp dir.

5.2 netsa.files.datefiles — Date-based filenames

5.2.1 Exceptions

exception DateFileParseError
Raised if a function is unable to parse a date within the provided filename.

5.2.2 Filename Manipulation

date_from_file (file : str)
Attempt to extract dates from a filename. The filename can be a full pathname or relative path. Dates are
presumed to exist somewhere in the pathname. See split_on_date for more detail on how dates are parsed
from filenames.

split_on_date (file : str)
Given a string (presumably the pathname to a file) with a date in it, return the directory of the file and the
date/non-date components of the file name as an array. This routine is pretty liberal about what constites a valid
date format since it expects, by contract, a filename with a date string embedded within it.

For example, the input "foo/bar-20090120:12:17:21.txt" parses to:

38 Chapter 5. Miscellaneous Facilities

http://docs.python.org/library/tempfile.html#tempfile.NamedTemporaryFile
http://docs.python.org/library/tempfile.html#tempfile.NamedTemporaryFile
http://docs.python.org/library/tempfile.html#tempfile.NamedTemporaryFile
http://docs.python.org/library/tempfile.html#tempfile.NamedTemporaryFile

NetSA Python Documentation, Release 1.3

(" foo’, ['bar-', 2009, None, 1, None, 20, ":", 12, "', 17, "', 21, '.txt’])
The following are all valid dates:

2008

200811

20081105

2008/11

2008/11/05
2008-11-05
2008.11.05
2008-11-05:07
2008-11-05:07:11
2008-11-05:07:11:00

Separators between year/month/day are ‘non digits’. This implies that directories within the path string can
contribute to the date along with information in the filename itself. The following is valid:

" /path/to/2008/11/05.txt’
The extraction is non-greedy: only the ‘last’ part that looks like a date is extracted. For example:
" /path/to/2008/11/2008-11-05.txt’

extracts only ‘2008-11-05" from the end of the string.
Separators between hour/minute/sec must be :’

date_file_template (file : str; [wildcard="x"])
Given a pathname file, returns the string with ’ x’ in place of date components. The replacement character can
be overridden with the wildcard argument.

This is useful for determining what dated naming series are present in a shared directory.

sibling_date_file (file : str, date : datetime)
Given a filename file, along with a date, returns the analagous filename corresponding to that date.

5.2.3 Directory Walking

datefile_walker (dir : sty [suffix : str, silent=False, snapper : DateSnapper, descend=True, reverse=False])
Returns an iterator based on the dated files that exist in directory dir. Each value returned by the iterator is a tuple
of (date, [filel, file2, ...1]),whereeach file matches the given date. See split_on_date for
more detail on how dates are parsed from filenames.

If descend is True, the entire directory tree will be traversed. Otherwise, only the top-level directory is exam-
ined.

If reverse is True, the iterator returns entries for each date in descending order. Otherwise, entries are returns
in ascending order.

Ifanetsa.data.times.DateSnapper snapper is provided, it will be used to enforce the alignment of
dates, throwing a ValueError if a misaligned date is encountered.

latest_datefile (dir : str [suffix : str, silent=False, snapper : DateSnapper, descend=True])
Traverses the given directory and returns a single tuple (date, [filel, file2, ...]) where date is
the latest date present and each file in the list contains that date. See split_on_date for more detail on how
dates are parsed from filenames.

5.2. netsa.files.datefiles — Date-based filenames 39

http://docs.python.org/library/exceptions.html#exceptions.ValueError

NetSA Python Documentation, Release 1.3

If descend is True, the entire directory tree is traversed recursively. Otherwise, only the top-level directory is
examined.

If anetsa.data.times.DateSnapper snapper is provided, it will be used to enforce the alignment of
dates, throwing a ValueError if a misaligned date is encountered.

date_snap_walker (dir : str, snapper : DateSnapper, [suffix : str, sparse=True])

Returns an iterator based on traversing the given directory. Each value returned by the iterator is a tuple
(date_bin, ((date, file), (date2, file2), ...)) where each filename contains a date
which falls within the given date bin (as defined by snapper).

The beginning and ending dates for this sequence are determined by what files are present on the system. If
spare is True, then only date bins which are actually occupied by files in the directory are emitted. Other-
wise, a tuple is generated for each date between the smallest and largest dates present in the directory. See
netsa.data.times.DateSnapper for more information on date bins.

If suffix is provided, all files not ending with the provided extension are ignored.

tandem datefile_walker (sources : strseq, [suffix : str, silent=True, snapper : DateSnapper, reverse=False])

Returns an iterator based on traversing multiple directories given by sources. Each value returned by the itera-
toris atuple (date, (dir, file), (dir2, file2), ...),where the given directory contains the
given file, which contains this date in its name. See split_on_date for more detail on how dates are parsed
from filenames.

For example, given: (/ /dir/one’, /dir/two’), areturned tuple might look like:
(date, (’/dir/one’, file_from_dir_one_containing_date_in_its_name),

(" /dir/two’, file_from_dir_two_containing_date_in_its_name),
(" /dir/two’, another_file_ from_dir_two_with_date_in_its_name))

If suffix is provided, all files not ending with the provided extension are ignored.

If reverse is True, tuples are generated with dates in descending order. Otherwise, dates are generated in
ascending order.

Ifanetsa.data.times.DateSnapper snapper is provided, it will be used to enforce the alignment of
dates, throwing a ValueError if a misaligned date is encountered.

5.3 netsa. json — JSON Wrapper Module

The netsa. json module provides a wrapper module for either the Python standard library json module, if it is
available, or an included copy of the simplejson module, otherwise. Please see the standard library documentation for
details.

5.4 netsa.tools.service — Tools for building services

check_pidfile (path : str, [unlink=True])

Attempts to create a locking PID file at the requested pathname path. If the file does not exist, creates it with
the current process ID, and sets up an atexit process to remove it. If the file does exist but refers to a no-
longer-existing process, replaces it and does the above. If the file does exist and refers to a running process, does
nothing.

Returns True if the PID file was created or replaced (which means we should continue processing), or False
if the PID file was left in place (which means someone else is processing and we should exit.)

40

Chapter 5. Miscellaneous Facilities

http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/exceptions.html#exceptions.ValueError
http://docs.python.org/library/json.html#module-json
http://code.google.com/p/simplejson/
http://docs.python.org/library/atexit.html#module-atexit

NetSA Python Documentation, Release 1.3

5.5 netsa.util.clitest — Utility for testing CLI tools

5.5.1 Overview
The netsa.util.clitest module provides an API for driving automated tests of command-line applications. It
doesn’t do the work of a test framekwork; for that, use a framework library such as unittest or functest.

Enough of netsa.util.clitest has been implemented to fulfill a minimal set of requirements. Additional
features will be added as necessary to support more complex testing.

This module is influenced by http://pythonpaste.org/scripttest/.

A usage example:

from clitest import =«

env = Environment ("./test-output")

Run the command

result = env.run("ryscatterplot —--help")

assert (result.success())

assert (result.stdout () == "whatever the help output is")

assert (result.stderr() == "")
Clean up whatever detritus the command left
env.cleanup ()

5.5.2 Exceptions

exception TestingException
Class of exceptions raised by the c1itest module.

5.5.3 Classes

class Environment ([work_dir : str], [save_work_dir : bool], [debug : bool], [<env_name>=<env_val>, ...])
An environment for running commands, including a set of environment variables and a working directory.

The work_dir argument is the working directory in which the commands are run. If work_dir is None, a
directory will be made using tempfile.mkdtemp with default values.

work_dir must not already exist or run will raise a TestingException. If save_work_dir is False,
cleanup will remove this directory when it is called.

If debug is True, several debug messages will be emitted on stderr.
Any additional keyword arguments are used as environment variables.

get_env (env_name : str)
Returns the value of env_name in the environment. If env_name does not exist in the environment, this
method returns None.

set_env (env_name : str, env_val : str)
Sets the value of env_name in the environment to env_val. env_val must be a string.

del_env (env_name : str)
Removes env_name from the environment. If env_name doesn’t exist, this method has no effect.

get_work_dir ()
Returns the working directory in which the commands are run.

5.5. netsa.util.clitest — Utility for testing CLI tools 41

http://pythonpaste.org/scripttest/
http://docs.python.org/library/tempfile.html#tempfile.mkdtemp

NetSA Python Documentation, Release 1.3

run (command : str, [<keyword>=<value>, ...])
Runs a single command, capturing and returning result information. Keyword arguments are passed to
netsa.util.shell.run_parallel. See the documentation of that function for an explanation of
how such arguments are interpreted.

Returns a Result object representing the outcome.

cleanup ()
Cleans up resources left behind by the test process.

class Result (command, envars, exit_codes, stdout, stderr, debug="False)
Contains information on a command’s exit status and output.

success ()
Returns True if the exit code of the process was 0. This usually, but not always, indicates that the process
ran successfully. Know Your Tool before relying on this function.

exited ([code])
Returns True if the process exited with the specified exit code. If the exit code is None or unsupplied,
returns True if the process terminated normally (e.g., not on a signal).

exit_status ()
Returns the exit status of the process, if the process exited normally (e.g., was not terminated on a signal).
Otherwise, this function returns None.

signal ()
Returns the signal on which the process terminated, if the process terminated on a signal. Otherwise, this
function returns None.

signaled()
Returns True if the process terminated on the specified signal. If the signal is None or unsupplied, returns
True if the process terminated on a signal.

format_status ()
Returns a human-readable representation of how the process exited.

get_status ()
Returns the raw exit status of the process, as an integer formatted in the style of os.wait.

get_stdout ()
Returns the standard output of the process as a string.

get_stderr ()
Returns the standard error of the process as a string.

get_info ()
Returns the information contained in the result as a human-readable string.

5.6 netsa.util.compat — Python version compatibility code

The netsa.util.compat module provides some additional functionality introduced between Python 2.4 and the
latest versions of Python. Obviously new syntax features cannot be supported, but certain utility functions in modules
or built-in functions can be added on for the sake of sanity.

The list of provided features is currently small, but is likely to grow over time.

To use the compatibility features, simply import this module:

import netsa.util.compat

42 Chapter 5. Miscellaneous Facilities

http://docs.python.org/library/os.html#os.wait

NetSA Python Documentation, Release 1.3

There is no need to import any specific symbols from the module—it will add the symbols directly where needed so
that they may be imported as normal. Built-ins will also work wherever used.

The additional functions currently provided by this module are:
e all
* any

e itertools.product

5.6. netsa.util.compat — Python version compatibility code 43

http://docs.python.org/library/functions.html#all
http://docs.python.org/library/functions.html#any
http://docs.python.org/library/itertools.html#itertools.product

NetSA Python Documentation, Release 1.3

44

Chapter 5. Miscellaneous Facilities

CHAPTER
SIX

CHANGES

6.1 Version 1.3 - 2011-03-28

¢ Switched to new common installation mechanism (based on distutils)
* Improved error handling in netsa.util.script

¢ Added new function netsa.script.get_temp_dir_pipe_name()

Added timedelta support to netsa.data.times

Added new netsa.util.compat to activity “compatibility features”

6.2 Version 1.2 - 2011-01-12

* Added support for Oracle in netsa.sql via cx_Oracle

* Added support for multi-paragraph help text in netsa.script

6.3 Version 1.1 - 2010-10-04

* Added experimental DB connection pooling to netsa.sql

* Made netsa.script flow_params —help work when site config file is missing.
¢ Added netsa.util.shell.run_collect_files

* Fixed a bug with netsa.script.Flow_params.using

* Fixed a bug involving netsa.script missing metadata causing crashes

6.4 Version 1.0 - 2010-09-14

Added netsa.util.clitest module to support CLI tool testing.
* Added PyGreSQL support to netsa.sql.

* Fixed a bug in netsa.sql db_query parsing code.

* Fixed a bug in netsa.sql database URI parsing code.

* Fixed bugs in netsa.data.nice nice_time_ticks.

45

NetSA Python Documentation, Release 1.3

6.5 Version 0.9 - 2010-01-19

* First public release.

46 Chapter 6. Changes

CHAPTER
SEVEN

LICENSES

7.1 License for netsa-python

Copyright 2008-2010 by Carnegie Mellon University

Use of the Network Situational Awareness Python support library and related source code is subject to the terms of
the following licenses: GNU Public License (GPL) Rights pursuant to Version 2, June 1991
Government Purpose License Rights (GPLR) pursuant to DFARS 252.227.7013

NO WARRANTY

ANY INFORMATION, MATERIALS, SERVICES, INTELLECTUAL PROPERTY OR OTHER PROPERTY OR
RIGHTS GRANTED OR PROVIDED BY CARNEGIE MELLON UNIVERSITY PURSUANT TO THIS LICENSE
(HEREINAFTER THE “DELIVERABLES”) ARE ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABIL-
ITY, INFORMATIONAL CONTENT, NONINFRINGEMENT, OR ERROR-FREE OPERATION. CARNEGIE MEL-
LON UNIVERSITY SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES,
SUCH AS LOSS OF PROFITS OR INABILITY TO USE SAID INTELLECTUAL PROPERTY, UNDER THIS LI-
CENSE, REGARDLESS OF WHETHER SUCH PARTY WAS AWARE OF THE POSSIBILITY OF SUCH DAM-
AGES. LICENSEE AGREES THAT IT WILL NOT MAKE ANY WARRANTY ON BEHALF OF CARNEGIE
MELLON UNIVERSITY, EXPRESS OR IMPLIED, TO ANY PERSON CONCERNING THE APPLICATION OF
OR THE RESULTS TO BE OBTAINED WITH THE DELIVERABLES UNDER THIS LICENSE.

Licensee hereby agrees to defend, indemnify, and hold harmless Carnegie Mellon University, its trustees, officers,
employees, and agents from all claims or demands made against them (and any related losses, expenses, or attorney’s
fees) arising out of, or relating to Licensee’s and/or its sub licensees’ negligent use or willful misuse of or negligent
conduct or willful misconduct regarding the Software, facilities, or other rights or assistance granted by Carnegie
Mellon University under this License, including, but not limited to, any claims of product liability, personal injury,
death, damage to property, or violation of any laws or regulations.

Carnegie Mellon University Software Engineering Institute authored documents are sponsored by the U.S. Department
of Defense under Contract F19628-00-C-0003. Carnegie Mellon University retains copyrights in all material produced
under this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce these
documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright license under the
contract clause at 252.227.7013.

7.2 License for simplejson

Copyright (c) 2006 Bob Ippolito

47

NetSA Python Documentation, Release 1.3

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

48 Chapter 7. Licenses

CHAPTER
EIGHT

INDICES AND TABLES

e Index
e Module Index
e Search Page

49

	netsa.script --- The NetSA Scripting Framework
	Overview
	Exceptions
	Metadata Functions
	Script Parameters
	Verbose Output
	Flow Data Parameters
	Producing Output
	Temporary Files
	Script Execution

	netsa.sql --- SQL Database Access
	Overview
	Exceptions
	Connecting
	Connections and Result Sets
	Compiled Queries
	Implementing a New Driver
	Experimental Connection Pooling
	Why Not DB API 2.0?

	netsa.util.shell --- Robust Shell Pipelines
	Overview
	Exceptions
	Building Commands and Pipelines
	Running Pipelines

	Data Manipulation
	netsa.data.countries --- Country and Region Codes
	netsa.data.format --- Formatting Data for Output
	netsa.data.nice --- ``Nice'' Numbers for Chart Bounds
	netsa.data.times --- Time and Date Manipulation

	Miscellaneous Facilities
	netsa.files --- File and Path Manipulation
	netsa.files.datefiles --- Date-based filenames
	netsa.json --- JSON Wrapper Module
	netsa.tools.service --- Tools for building services
	netsa.util.clitest --- Utility for testing CLI tools
	netsa.util.compat --- Python version compatibility code

	Changes
	Version 1.3 - 2011-03-28
	Version 1.2 - 2011-01-12
	Version 1.1 - 2010-10-04
	Version 1.0 - 2010-09-14
	Version 0.9 - 2010-01-19

	Licenses
	License for netsa-python
	License for simplejson

	Indices and tables

