
1

Threadmap Documentation

Written by: KSL Group

Contents
Opening Statement ... 1

Process Hollowing ... 1

Today’s methods of detection .. 2

Bypassing common detection methods.. 3

VAD’s protection alteration .. 3

PEB and VAD comparison ... 4

Mapping an Image File .. 6

Research overview .. 8

Research assertions .. 8

Threadmap workflow .. 9

Analyzing with threadmap .. 10

Optional flags .. 11

Closing Statement ... 12

Opening Statement
Process hollowing is a long time persistence mechanism which dates back to the days of the

infamous computer worm Stuxnet (2010).

In recent years, the need for more advanced forensic capabilities became more evident as

malwares became increasingly more sophisticated and new evasion methods were put to use.

In particular, new process hollowing techniques were observed in the wild.

It is our belief that despite some recent advances in forensic analysis capability, it is still too

easy for a motivated adversary to remain undetected.

In this document we will provide a short overview of how process hollowing works and what

the most popular tools do to detect it. We will then describe the methods we utilized to avoid

them, and ultimately the conclusions we have reached and implemented in our new Volatility

plugin.

Process Hollowing
Process hollowing is a type of code injection technique in which an attacker creates a legitimate process

and suspends it, then he “hollows” the process in order to inject different code. Finally he resumes the

2

process. In this way the malicious code is “hidden” under a legitimate process’s structure. This can be

summed up the following way (taken from Art of Memory Forensics):

1. Start a new instance of a legitimate process (for example, C:\windows\system32\lsass.exe), but

with its first thread suspended. At this point, the ImagePathName in the PEB1 of the new

process marks the full path of the legitimate lsass.exe.

2. Acquire the contents for the malicious replacement code. This content can come from a file on

disk, an existing buffer in memory, or over the network.

3. Determine the base address (ImageBase2) of the lsass.exe process, and then free or unmap the

containing memory section. At this point, the process is just an empty container (the DLL3s,

heaps, stacks, and open handles are still intact, but no process executable exists).

4. Allocate a new memory segment in lsass.exe and make sure that the memory can be read,

written, and executed. You can reuse the same ImageBase or a different one

5. Copy the PE4 header for the malicious process into the newly allocated memory in lsass.exe.

6. Copy each PE section for the malicious process into the proper virtual address in lsass.exe.

7. Set the start address for the first thread (the one that has been in a suspended state) to point at

the malicious process’ AddressOfEntryPoint value.

8. Resume the thread. At this point, the malicious process begins executing within the container

created for lsass.exe. The ImagePathName in the PEB still points to

C:\windows\system32\lsass.exe.

Today’s methods of detection

 In volatility’s arsenal of plugins we can see that there are several ways to detect process hollowing:

1. VAD’s5 permissions. A classic approach is to detect allocated memory marked with

PAGE_EXECUTE_READWRITE permissions. This is a very crude method of finding suspicious

threads in memory as it outputs a whole lot of false positives.

2. Comparison of ImageBaseAddress of PEB with the registered process’s VADs.

a. ImageBaseAddress has to point to a VAD with a File Object

b. Matching between the file name in the PEB and the file name written in the VAD

pointed to by the IBA

3. Comparison of LDR6 lists with VAD information.

1 PEB – Process Environment Block.
2 IBA – ImageBaseAddress field.
3 DLL – Dynamic Link Library.
4 PE – Portable Executable.
5 VAD – Virtual Address Descriptor
6 LDR – Points to a _PEB_LDR_DATA structure, which contains details about the DLLs loaded in a process

3

Bypassing common detection methods
After looking at some of the plugins we managed to perform process hollowing and remain undetected.

In the following POCs7 we will challenge each method mentioned in the above. These techniques don’t

require any additional elevated permissions or ring-0 access.

VAD’s protection alteration
VAD’s protection flags might be misleading. VADs are created with initial protection, these flags

remain a part of the VAD’s object, even if they are changed with VirtualProtect for example. This

is also documented in The Art of Memory Forensics. In fact it is possible for malware to map a

region with copy-on-write permissions, write malicious code there, and then change the

protection to make it executable. The VAD object will still show the original protection flags.

In the following POC we used malfind in an attempt to detect suspicious mapped memory

regions.

Fig. 1-1: A snippet of malfind output of KSLSample.vmem8

By taking a look at Figure 1-1 we can see an irregularity within the VAD. By observing the VAD’s

details from the output we can notice:

 There is an MZ magic that implies that there is a loaded PE file.

 The protection flags are set to PAGE_EXECUTE_READWRITE.

 An inconsistency between the loaded PE file within the VAD’s address space and the

missing File Object flags in the VAD.

Svchost.exe PID: 2640 has been a subject to process hollowing injection technique.

By understanding how malfind works (targeting the VAD’s protection flags) we divided the

allocation of the memory and the execution of the written code into more steps:

 Allocate memory within the process’s address space without execute permissions

(PAGE_READWRITE in our POC).

 Write within the allocated memory.

 Change the permissions of the memory region to enable execution

(PAGE_EXECUTE_READWRITE in our POC).

 Execute the injected code.

7 POC – proof of concept. For the purpose of demonstrating our techniques we used Process-Hollowing project
taken from https://github.com/m0n0ph1/Process-Hollowing. The project in its entirety belongs to m0n0ph1 and all
credits go to him. The code sample is used for research and educational purposes only and we do not encourage
nor condone any other use of it.
8 KSLSample.vmem is our given memory dump on Windows 7 64bit. The memory dump contains
five processes (svchost.exe) that were subject to process hollowing in different approaches

https://github.com/m0n0ph1/Process-Hollowing

4

 PVOID pRemoteImage = VirtualAllocEx

 (

 pProcessInfo->hProcess,

 pPEB->ImageBaseAddress,

 pSourceHeaders->OptionalHeader.SizeOfImage,

 MEM_COMMIT | MEM_RESERVE,

 PAGE_READWRITE

);

 DWORD old = 0 ;

 VirtualProtectEx(

 pProcessInfo->hProcess,

 pRemoteImage,

 pSourceHeaders->OptionalHeader.SizeOfImage,

 PAGE_EXECUTE_READWRITE,

 &old

);

The code presented above is a snippet of our altered ProcessHollowing.exe source code.

This code is armed with the malfind evasion technique.

After altering the source code to be more evasive, we can see that malfind failed to show any

suspicious activity regarding our process (PID: 2784 in the given memory dump). By using the

rest of the methods for detecting process hollowing we can find our process for now.

PEB and VAD comparison
The ImageBaseAddress (IBA) field is part of the PEB which lies in user-mode memory.

The role of the ImageBaseAddress is to point to the loaded .exe file of the process. Part of the

process hollowing technique is to modify the IBA pointer to our allocated code.

Normally the IBA points to an address that is part of a VAD that has a File Object

 (the legitimate PE), but our modification caused the IBA to point to a VAD without a File Object

(As we allocated memory space without attaching any file). This so called ‘flaw’ of our technique

is used by plugins and tools to detect process hollowing (e.g. one of hollowfind’s methods is to

extract the PEB’s IBA pointer field and attempt to locate its matching VAD. Then it checks

whether the VAD has a File Object and notify us accordingly).

5

Fig. 1-2: A snippet of hollowfind plugin

Figure 1-2 shows a snippet of hollowfind’s output – focused on svchost.exe with PID: 2784

(From the previous technique). Hollowfind found this process by applying the comparison

between the IBA pointer and the type of VAD it points to. The IBA pointer points to a short VAD

(Tag: VadS) and there is not File Object found. Notice that the memory protection is

PAGE_READWRITE, because this is how the VAD was created, although it has been changed to

PAGE_EXECUTE_READWRITE.

The PEB (as mentioned) relies in user-mode, thus can be modified easily. Here we will change

the IBA pointer to a loaded DLL only make the false assumption that the IBA pointer does point

to a legitimate VAD with a File Object.
 LONG_PTR ldr_addr;

 PPEB_LDR_DATA ldr_data;

 PLDR_MODULE LdMod;

 DWORD *bad_address;

 __asm mov eax, fs:[0x30] //get the PEB ADDR - 32 bit

 __asm add eax, 0xc

 __asm mov eax, [eax] // get LoaderData ADDR

 __asm mov ldr_addr, eax

 ldr_data = (PPEB_LDR_DATA)ldr_addr;

 LdMod = (PLDR_MODULE)ldr_data->InLoadOrderModuleList.Flink->Flink; // get

the second dll that is loaded

 bad_address = (DWORD*) LdMod->BaseAddress;

 __asm mov eax, gs:[0x60] // using the GS register to get to the peb

 __asm add eax, 0x10 // get the image base address

 __asm mov edx, bad_address

 __asm mov[eax], edx // change IBA

6

After implementing the changes in the code, our process hollowing technique became stealthier

(the relevant process is svchost.exe PID 2220). This process isn’t found when hollowfind is used,

but can be detected by malfofind.

Fig. 1-3: A snippet of malfofind’s output

Malfofind has been able to find our new alteration, because it matches the ImagePathName

field in the PEB (a subfield of ProcessParameters) with the VAD’s file name (a subfield of File

Object). In the output we can clearly see the discrepancy between the files that raises a red flag.

The ImagePathName (as part of the PEB) is located at user-mode, which makes it simple to

modify.

Mapping an Image File
As shown in the example above, malfofind finds the VAD pointed to by the IBA and compares

the file name in the File Object with the PEB’s file name. An alternate solution to bypass this

check is by loading the process’s image file. Internally we will be creating a new VAD that is

backed with a File Object of the process’s image file itself.

Then we can alter the IBA pointer to the loaded image file and create a new deceptive figure to

our hollowed process.
hFile = CreateFile("C:\\Windows\\SysWOW64\\svchost.exe", GENERIC_READ,

FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);

hMap = CreateFileMapping(hFile, NULL, PAGE_READONLY, 0, 0, NULL);

LPVOID dw;

dw = MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0); //map the svchost file

VirtualLock(dw, sizeof(&dw)); // make sure that it won't be paged

LONG_PTR ldr_addr;

PPEB_LDR_DATA ldr_data;

PLDR_MODULE LdMod;

DWORD *bad_address = (DWORD *)dw;

__asm mov eax, gs:[0x60] // using the GS register to get to the peb

 __asm add eax, 0x10 // get the image base address

__asm mov edx, bad_address

__asm mov[eax], edx // change IBA

In the given image, svchost.exe PID: 2828 is a hollowed process that remains undetectable to

hollowfind, malfofind and malfind. This process does leave an interesting mark:

Fig. 1-4: A snippet of ldrmodules’ output for PID: 2828

7

In Figure 1-4 we can see the output of ldrmodules and what’s interesting about is the fact that

svchost.exe itself returns false in every list of the LDR field.

The LDR field is part of the PEB, which also lies in user-mode memory. It consists of three doubly

linked lists (taken from Art of Memory Forensics):

 InLoadOrderModuleList – Organizes the modules in the order in which they are loaded

into a process.

 InMemoryOrderModuleList – Organizes modules in the order in which they appear in

the process’s virtual memory layout.

 InInitializationOrderModuleList – Organizes modules in the order in which their DLLMain

function was executed (Not every loaded DLL’s DLLMain will be executed).

The lists contain the same modules in a different order.

The .exe image file will appear as the first module at the InLoadOrderModuleList, because it is

the first module that is being loaded to memory. It will not appear in the

InInitializationOrderModuleList, as the image file doesn’t have a DLLMain function and is

executed in a different way.

Ldrmodules plugin scans for all the loaded image files within the process’s VADs and matches

them with the lists. The new mapped svchost.exe file is located in a different address than

before, so when the ldrmodules matches the VAD’s start address with the base address in the

LDR lists it finds a discrepancy. The LDR can be modified quite easily (relies in user-mode

memory), so we patched the base address of svchost.exe in the lists to point to the new mapped

file.
hFile = CreateFile("C:\\Windows\\SysWOW64\\svchost.exe",

GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL);

hMap = CreateFileMapping(hFile,NULL,PAGE_READONLY,0,0,NULL);

LPVOID dw;

dw = MapViewOfFile(hMap,FILE_MAP_READ,0,0,0); //map the svchost file

VirtualLock(dw,sizeof(&dw)); // make sure that it won't be paged

LONG_PTR ldr_addr;

PPEB_LDR_DATA ldr_data;

PLDR_MODULE LdMod;

DWORD *bad_address = (DWORD *)dw;

__asm mov eax, gs:[0x60] // using the GS register to get to the peb

__asm add eax, 0x10 // get the image base address

__asm mov edx, bad_address

__asm mov[eax], edx // change IBA

__asm mov eax, gs:[0x60] // using the GS register to get to the peb

__asm add eax, 0x18 // get the LDR

__asm mov eax, [eax]

__asm add eax, 10h // get the InLoad list

__asm mov eax,[eax]

__asm add eax, 30h // go to where old svchost address was

__asm mov edx, bad_address

__asm mov[eax], edx // overwrite it with the bad address

8

Fig. 1-5: A snippet of ldrmodules’ output for PID: 2460

Figure 1-5 shows us the output of the ldrmodules plugin running over our memory dump with

svchost.exe PID: 2460 (Our modified LDR list). This process demonstrates the final version of our

code. It remains undetectable to hollowfind, malfofind and malfind. Also we have successfully

patched our loaded file’s address to the lists. The remaining output shows us that most of the

DLLs are not found within the LDR lists. The reason is that our payload uses its own DLL files that

are not required by svchost.exe. This can be solved by patching the LDR lists with the right base

address like we just demonstrated.

Research overview
The main problem with tools used today is that they heavily rely on fairly simple user-land information.

User mode memory is easy to manipulate and can be made to seem legitimate, so we looked to find a

more conclusive way to detect code injection – mostly in the form of process hollowing. For that

purpose, we used kernel-based information only in an attempt to provide the most complete solution

we could. We focused our research to find a field or attribute that resembles the ImageBaseAddress in

the PEB, but in kernel memory.

We noticed two interesting fields in the _ETHREAD structure (taken from Windows Internals 6th Edition):

- StartAddress – A pointer to ntdll.dll!RtlUserThreadStart wrapper function, which its value is

determined by the operating system.

- Win32StartAddress – The address of the function to be executed by the thread, which is passed

by the user or the application when using the CreateThread API call (i.e. at process creation the

Win32StartAddress points to the main function at .text section).

Changing Win32StartAddress field is an inevitable step required to successfully perform process

hollowing (step 7 in the above process hollowing description). Using the Win32StartAddress kernel field

we can see what is actually being executed. After we find the location to which a thread is pointing, we

can start gathering some information about that particular memory region by mining data from the VAD

object (unless it is a system thread). After gathering everything, we will run some tests to find any type

of suspicious activity.

Research assertions
The plugin runs several tests that help us pinpoint suspicious threads. Our conclusions apply as follows:

- Every VAD that a thread points to must have a File Object and be a type of IMAGE FILE.

We have reached this conclusion after carefully observing changes in the VAD trees when calling

virtual memory allocation functions from user-land. No matter what the parameters we used

were, it seemed not possible to create a VAD with the correct type (image). At most, it’s possible

to create a VAD that contains a File Object by using a memory mapping function on some file,

and still the allocated memory will not be marked as a true image. Therefore it is safe to

9

conclude that the only way for malware to masquerade as a legitimate process is through kernel

functionality which is beyond the scope of this plugin.

- A process must have at least one thread that points to its loaded image file.

- A kernel thread must point to a loaded kernel module.

- A thread that points to a VAD that has a loaded .EXE File Object that is different from the

process’s image file is considered suspicious.

- A JMP/CALL procedure that refers the thread to a different VAD object is considered suspicious

Threadmap workflow
Bearing the rules described above in mind, we have designed a plugin to perform the necessary testing

for us. Notes:

- Once a thread has reached to a red category it will remain red, even if later checks come out

fine (e.g. a thread that is related to a VAD object without a File Object will be considered

suspicious, even if there are no suspicious JMP/CALL procedures).

- Orange categories will not change to green (similar to red categories).

- Yellow categories can turn out to be green at the end of the flow.

10

Analyzing with threadmap
As previously discussed, the goal of the plugin is to use kernel-based analysis rather than user-mode

based analysis to prevent as much tampering as possible.

The approach we took is based on mapping each thread to its VAD and trying to obtain as much

information as possible about the process to which the thread belongs. The mapping is based on the

address of entry point found in every _ETHREAD object, pointing to the memory region where the

thread starts its execution. By obtaining the correct VAD it becomes simple to determine whether or not

a process was tampered with maliciously.

The following properties can be found through VADs and might indicate a process has gone bad:

1. The VAD doesn’t have a File Object

2. A JMP or CALL instruction is located at the beginning of the code. Even more suspicious if it

jumps to a different memory range

3. The VAD isn’t marked as belonging to a loaded image

4. The File Object lists an unfamiliar file

By using these properties we can guarantee very reliable results and a low rate of false-positives.

Fig. 2-1: Threadmap’s output for process svchost.exe PID: 2460 applied as a filter on the given image

Suspicious process name, PID and PPID

Reasons why the process is

marked as suspicious

Reason why this thread is

marked as suspicious

Thread’s entry point VAD’s information

Disassembly of

thread’s entry

point

Thread’s ID and state

11

We applied the process filter to suppress unnecessary information. The output splits processes with

each information block containing more information about the process’s respective threads.

A process is marked as suspicious when:

 There isn’t at least one thread that points to the process’s image file, or the only thread that

points to the process’s image file is in suspended mode.

 A suspicious thread has been found within the process.

If the process matches the first category all its threads are printed out. With the second category, only

the threads that are marked suspicious are printed out with the “Reason” section.

In Fig. 2-1 we can see the suspicious svchost.exe image matches both categories which means that all its

threads are printed out (in this specific case there is only one thread). This thread is marked as

suspicious, because the VAD doesn’t have a File Object and its type isn’t an Image File. The VAD’s

protection is printed out, but the protection is PAGE_READWRITE. This VAD contains the malicious

payload of the hollowed process. Note that this is the process whose protection rights we changed to

deceive other plugins (as previously shown).

There are a few cases where you might encounter some false-positives. One example of this is with the

CSRSS process that always stands out as a false-positive and cannot be filtered out automatically by the

plugin without compromising our detection rate. CSRSS’s process is a unique one because its threads

don’t actually point to an image file (but that does not necessarily mean it can’t be hollowed – so you

should still always look at it).

A note regarding platform support.

Currently in this version we chose not to support any XP profiles due to the fact that our solution is

simply not well adapted to that environment. Under XP, it is possible to write to kernel memory regions

from user-land, thus essentially making our fundamental research assertion incorrect. Another problem

is related to how older kernels store thread data, and unfortunately some of the things that are

different make it impossible for the plugin to work.

Optional flags
There are two flags that can be passed to the plugin for different output:

 -p (--PID) – runs for one specific process or a space-separated group of processes.
 -v (--verbose) – Prints each process with its registered threads. Output contains ‘clean’

processes and threads with ‘marked’ ones. Marked processes are printed out with notes and
threads are printed with a ‘Reason’ section (Figure 2-1)

Another supported flag is -D (--dump-dir) which dumps an entire VAD related to a thread’s entry point.
Only works when a process is ‘marked’. If a JMP/CALL referencing a different VAD’s range is present,
both VADs will be dumped.

12

Closing Statement
Process hollowing has been around for quite a while now and yet very little research of the type

we did has been done, despite the fact that a lot of malware samples employ this kind of code

injection. We took the best tools available and showed how easy it still is to hide from them.

Surely it should not be this easy given that code injection is commonly used this way. By using a

novel approach that bases itself on kernel-mode structures we are giving researchers a better,

more accurate, and more complete tool to investigate malware in ways that weren’t thought of

before, appropriately making it simpler to mitigate common threats with relative ease. Therefore,

we believe that our contribution to Volatility Foundation is of utmost importance.

