Documentation for browserhooks

Introduction

Browserhooks are an extension of original apihooks plugin focused on detection of
sophisticated banking malware intrusion in prevalent web browsers.. As an addition we
implemented support for hook detection in 32-bit modules of WOWG64 processes, which was not
supported by the original apihooks plugin. Which we thought would be a great addition and
greatly improve the possible hook detection on compromised systems.

Installation & Execution

Download the plugin from https://github.com/eset/volatility-browserhooks and then copy into
%volatility%/plugins/malware, where %volatility% is the installation directory of the framework.

Example of the command with -D switch that stores the hooking modules in the specified
directory:

vol.py -f “c:\data\win7.vmem” --profile Win7SP1x86 browserhooks -D
_store_mods

Use Cases

Almost every banking Trojan identifies a browser based on its process name, therefore we
restrict the detection for these 4 processes: chrome.exe, firefox.exe, iexplore.exe,
microsoftedgecp.exe. The attack support for other projects are rare (just past versions of Opera
occasionally - not considered). Generally, research related to hooking techniques of
contemporary banking Trojans was published in [1].

For Chromium-based projects, the crucial part in detecting hooks on the attack points is locating
the virtual method table with SSL related functions, shortly denoted SSL VMT. Basically, we
identified three new types of hooking:
1) Replacement of a function in SSL VMT (Win{32;64}/Spy.Ursnif-based bankers;
Win{32;64}/Qadars, Win{32;64}/Trickbot, Win{32;64}/Zbot-based bankers)
2) Inline hook in SSL VMT (Win{32;64}/Dridex, Win{32;64}/Tinukebot)
3) Inline hook in a wrapper of a function in SSL VMT or another unexported function that
could be misused in the same way (Win{32;64}/Qbot)

https://github.com/eset/volatility-browserhooks

The following table sketches an overview of the patterns that help to achieve that. The string
‘000343007 is a shortcut for the hex string “00 00 00 03 04 03 00 00” which is a strong pattern
identifying the position of the SSL VMT table in Chrome. The patterns were not optimised to
catch as many release as possible, but to uniformly identify the beginning of the table. Note that

the pattern changed even between the minor releases.

Chrome version

Release Date

32-bit

64-bit

61.0.3163.100

September 21, 2017

More of them

More of them

61.0.3163.91 (cf. the code) (cf. the code)
61.0.3163.79 September 5, 2017

60.0.3112.113 August 24, 2017 “00034300” “00034300”
60.0.3112.101

60.0.3112.90

60.0.3112.78 July 25, 2017

59.0.3071.115 June 26, 2017 “00034300” “00034300”
59.0.3071.109

59.0.3071.104

59.0.3071.86 June 5, 2017

58.0.3029.110 May 9, 2017 “00034300” “00034300”
58.0.3029.96

58.0.3029.81 April 19, 2017

57.0.2987.133 March 29, 2017 “00034300” “00034300”
57.0.2987.110

57.0.2987.98 March 9, 2017

56.0.2924.87 February 1, 2017 “00034300” “00034300”
56.0.2924.76 January 25, 2017

55.0.2883.87 December 9, 2016 “00034300” “00034300”
55.0.2883.75 December 1, 2016

54.0.2840.87 November 1, 2016 “00034300” “00034300”
54.0.2840.71

54.0.2840.59 October 12, 2016

53.0.2785.143
53.0.2785.116
53.0.2785.101

September 29, 2016

August 31, 2016

More of them
(cf. the code)

More of them
(cf. the code)

53.0.2785.89

52.0.2743.116
52.0.2743.82

August 3, 2016
July 20, 2016

More of them
(cf. the code)

More of them
(cf. the code)

51.0.2704.106
51.0.2704.103

June 23, 2016

More of them
(cf. the code)

More of them
(cf. the code)

51.0.2704.84
51.0.2704.79

51.0.2704.63 May 25, 2016

We also tested the custom hooking methods of Win{32;64}/Qbot for the recent builds (v321.28)
caught in-the-wild (89E910796279F75B86399724CEAES841FATE34C1 (32-bit, PETS: (4.9.2017
17:47:31), 7TEE4545B92BA0484C0OD27FC74374CB772BDEG4ER (64-bit, PETS: 4.9.2017 17:48:12)).

Win32/Qbot Win64/Qbot
61.0.3163.100 - -
60.0.3112.78 OK OK
59.0.3071.115 - -
58.0.3029.96 OK -
57.0.2987.133 OK OK
56.0.2924.87 OK Ok
55.0.2883.75 OK OK
54.0.2840.87 - (ssl_read only) -
53.0.2785.116 - (ssl_write only) OK
52.0.2743.116 OK -
51.0.2704.84 OK -

During the testing phase, we found some false alarms of hooks in system functions, so we
added several exclusions in the whitelist.

Limitations

There were several struggles we faced limiting the potential use of the plugin.

1) Absence of the SSL VMT table in the memory dump.
After starting Chrome, only the parent chrome.exe has chrome.dll mapped in its process space
and this library contains the potentially hooked SSL VMT table. However, we experienced cases
when chrome.dll was properly loaded but the part of .data section with SSL VMT was not
present in the memory dump (this was cross-checked by dumping the DLL with dlldump and
searching the pattern unsuccessfully). We concluded that the corresponding pages had been
swapped to the disk and therefore not available in the dumps.

2) Diversity
There are many variants of browsers and also many versions for Chromium-based projects with
variable position of SSL VMT. There are even more different variants of banking Trojans, using
various approaches that evolve in time. So it is unfortunately not possible to state that the plugin
is universal.

The original apihooks plugin (that browserhooks is based on) does not support wow64 modules
and therefore does not detect hooks in WoW64 processes. We were able to overcome this
obstacle and implemented wow64 module support - feature that might be very useful even in
original apihooks plugin. While Google is now offering 64-bit Chrome for download to a visitor
with 64-bit machine by default. It is still very common for 32 bit browsers (Firefox is 32-bit on all
systems by default, older installation of Chrome will stay 32 bit unless manually reinstalled, ...)
to run on 64 bit machines and therefore wow64 is necessary. Internet Explorer, Mozilla Firefox
and Microsoft Edge works in all cases due to functions being exported. Regarding Chrome, we
tested the SSL VMT lookup.

Integration with VolUtility

We prefer this GUI for VF, because it can be easily customized for our purposes.

Scenario 1

We had a Win7SP1x64 system compromised with a banking Trojan. After running
browserhooks we can identify crucial hooks (custom by Win{32;64}/Qbot and some standard
inline ones):

HookType Process VictimModule VictimModBase VictimMod Size Function HookAddress HookModBas

SSL Hooks for Chrome implemented by Qbot chrome exe chrome dll 0x7fee9720000L 3 0 0x7feeab78da0L 0x180002120L 0x7feed72000
SSL Hooks for Chrome implemented by Qbot chrome exe 2220 ome.dil 0x77ee9720000L 8 4 0 0x7feeab78da0L 0x180002120L 0x180000000L
SSL Hooks for Chrome implemented by Qbot chrome.exe 2220 chrome.dll 0x7fee9720000L L 8 0x7feeab790b8| 180001134L 0x 00!
SSL Hooks for Chrome implemented by Qbot chrome.exe 2220 chrome.dil 0x7iee9720000L 8 04 Ox7feeab790b8L 0x180001734L 0x180000000L
Inline/Trampoline chromeexe Z 0x77efdbc0000L 424 2 1} >onnect at Ox7fefdbee0f0 0x18000c2asL 0x7fefdbc0000
Inline/Trampoline chrome exe Ox7fefdbc0000L 3 0359424 IWE nnect at 0x7fefdbee0f0 0x18000c2a8L 0x180000000L
Inline/Trampoline chrome exe 2 0x7fefdbcO000L 8791760359424 di'WSASend at 0x7fefdbc13b0 0x18000bf70L 0x7fefdbc0000
Inline/Trampoline chrome_exe 2 i 0x77efdbc0000L 879176(4 NS di'WSASend at 0x7fefdbc13b0 0x18000bf70L 0x180000000L

Inline/Trampoline chrome_exe 0x7Tefdbc0000L 8791760359424 il d at 0x7fefdbc8000 0x1800¢ 8L 0xTfefdbc0000

BookMark Row |

Search cell value

‘Showing 1 to 10 of 10 entries

Export Row
Export Table

Store Hooking Module

Some lines of the output represents the intermediate, trampoline, step. However, the lines with

the base of the hooking module equal 0x1800000000 look suspicious. Note the green option in

the right click menu: “Store Hooking Module”. This would run “’dlldump” with the corresponding
PID and HookModBase parameters.

Plugin Date Dlldump
Command Plugin Type Completed Actions

diidump Processesand 09 Sep 17 ® | M

DLLs 20:45:16

browserhooks Other

Process ImageBase Name StoredFile

EILEL HELEI Oxfffa80023d1380L | 6442450944 | chrome.exe

apihooks Processe

S Showing 1to 1 tri
s

Now we can discovered more about the library by clicking “File Details”:

File Details - module.2220.3e9d1380.180000000.dlI

Details

Details

HEXINET FileName module_2220.3e9d1380.180000000.dll

ExifData FileSize

VirusTotalSearch MD5 €34613d3082163927e2da%8 3d

) SHA256 1al 0fd09a91ff47ec58411614b41c2ac96¢7306 c3587edbi6146D
SqiiteViewer

Download wnload
ExtractStnings
Delete

YaraScanner

HiveViewer

We see the relatively small file size and the option to download the dump. But let us first peek
into the Virustotal results:

VirusTotal - complete

Permal ink Link to Report
ScanDate 2017-09-29 18:48:13

Results 7TI63

Engine Version

We can see that the file is highly suspicious now (e.g. ESET detects it as a variant of
Win64/Qbot.B, which might lead to more detailed description
“http://www.virusradar.com/en/Win64_Qbot.B/description” if available. In a similar fashion for AV
engines and their virus description websites). The case could be closed very easily as a
machine infected with a recent banking Trojan.

Scenario 2

The same infection by Qbot like the previous one, but now running as a Wow64 process and
still detected:

Process VictimModule VictimModBase VictimMod Size Function HookAddress HookModBase

SSL Hooks for Chrome implemented by Qbot chrome.exe 28 chrome.dil 0x67240000 1779912704

SSL Hooks for Chrome implemented by Qbot ex chrome.dil

Inline/Trampoline chrome 8 1988644864 52 3 V Connect at 0x7685cc3

Inline/Trampoline chrome exe Ws2 324l 1988644864

Inline/Trampoline chrome.exe 28 WS2 32.dll 1988644864 0x836a3ac 0x8360000

Inline/Trampoline chrome.exe 8 0 1988644864

However, this time ESET does not flag the threat, because the dumped file was not
reconstructed well. This holds in general and it depends on how strict AV engines are in
checking the integrity of the executable. Adding yara rules for chosen banking bot families may
fix this.

ESET-NOD32

To conclude this case, one can extract strings from the module, choose those looking
interesting and try an internet search. Picking “\“AppData\LocalLow\”, “\\.\pipe\%ssp”,
“‘data_inject”, “data_after”, “data_before” would lead to an online analysis of a similar file and the
following VT report:
https://www.reverse.it/sample/41ff3307655ea6e6e0d0874deba24f56ada50e765c3e2d83214d35
4b92b5e3df

https://www.reverse.it/sample/41ff3307655ea6e6e0d0874deba24f56ada50e765c3e2d83214d354b92b5e3df
https://www.reverse.it/sample/41ff3307655ea6e6e0d0874deba24f56ada50e765c3e2d83214d354b92b5e3df
http://www.virusradar.com/en/Win64_Qbot.B/description

SHA256: 41f3307655ea6e6e0d06874deba24f56adas0e765¢c 3e2d83214d354b92b5e 3df
File name: dumped_dll.exe :

=
Detection ratio: 43 /64 ‘r 0 O

Analysis date: 2017-09-30 15:27:12 UTC (2 minutes ago)

= Analysis @, File deta @ Additional information ® Comments o 1 Votes

Antivirus Result Update
ESET-NOD32 a variant of Win32/Qbot. BM 20170930
Scenario 3
In this case we discover SSL VMT inline hooks (Chrome version 55.0.2883.87):

HookType Process VictimModule HookAddress HookModBase HookModule

Chromium-based SSL VMT Hook Inline chrome.exe : chrome dil 0x591d1dd0 0x5cd00000 z_bot_engine32. tmp.dec
Chromium-based SSL VMT Hook Inline chromeexe 3 chrome.dil 0x591d1dd0 0x591d0000 z_bot_engine32 tmp.dec
Chromium-based SSL VMT Hook Inline chrome exe 3 chrome dil 0x591d1180 0x5cd00000 z_bot_engine32 tmp.dec

Chromium-based SSL VMT Hook Inline chrome.exe 3128 chrome dil 0x591d1180 0x591d0000 z_bot_engine32 tmp dec

howing 1 to 4 of

The name of the hooking module is usually unknown because the attackers load their
executables almost always customly. Here, we loaded it into Chrome by calling the LoadLibrary
WINAPI for the z_bot _engine32.tmp.dec, therefore the name is visible.

Checking the VT results show:

ESET detects the dump as a variant of Win32/Spy.Banker.ADOL (which was a predecessor of
Win32/Tinukebot coming from the same code base).

Scenario 4

This example demonstrates SSL VMT replacements together with a more stealthy hooks of
exported WINAPI attack points. After running browserhooks we get:

HookType Process VictimModule VictimModBase VictimModSize Function HookAddress HookModBase
Chromium-based SSL VMT Replacement chrome exe 8 chrome dil 0x5b3a0000 1577930752 nacl_user 0x57359300 0x57320000
Chromium-based SSL VMT Replacement chrome exe 8 chrome dll 0x5b3a0000 1577930752 nacl_user 0x57359030 0x57320000
Chromium-based SSL VMT Replacement chrome.exe 8 chrome.dll 0x5b3a0000 1577930752 nacl_user 0x57358d40 0x57320000
Infine/Trampoline chrome.exe 8 WS2_32.dil 0x770f0000 19976888 WS2_32 diWSAEnumNetworkEvents at 0x770f31b1 0x5be0000 0x770f0000
Infine/Trampoline chrome exe 8 W52 32 dil 0x770f0000 b WS2_32 diTWSAEnumNetworkEvents at (x770f31b1 (x5be0000 0x5be000
Infine/Trampoline chrome exe 8 Ws2 32.dil 0x770f0000 6 WS2_32 diWSAEventSelect at 0x770f648f 0x59b0000 0x770f0000

Infine/Trampoline chrome.exe WS2_32.dil 0x770f0000 6 WS2_32 dil'WSAEventSelect at 0x770f648f 0x59b0000 0x59b0000

Infine/Trampoline chrome exe WS2_32.dil 0x770f0000 b WS2_32 dI'WSAGetOverlappedResult at 0x770f7483 (x5bf0000 0x770f0000

Infine/Trampoline chrome exe 8 W52 32 dil 0x770f0000 i WS2_32 di'WSAGetOverappedResult at 0x770f7489 0x5bf0000 0x5bf0000
Infine/Trampoline chrome.exe WS2 32.dil 0x770f0000 6 WS2_32 di'WSASend at 0x770f4406 0x5c10000 0x770f0000
Infine/Trampoline chrome.exe WS2_32.dil 0x770f0000 b WS2_32.dI'WSASend at 0x770f4406 0x5c10000 0x5c10000
Infine/Trampoline chrome exe W52 32 dil 0x770f0000 b WS2_32 dillclosesocket at 0x770£3918 0x5c00000 0x770f0000
Infine/Trampoline chrome exe 8 WS2 32.dil 0x770f0000 6 WS2_32 dillclosesocket at 0x770f3918 0x5c00000 0x5c00000
Infine/Trampoline chrome.exe 8 WS2_32.dil 0x770f0000 b WS2_32.dllirecv at 0x770f6b0e 0x6150000 0x770f0000

Infine/Trampoline chrome exe 8 WS2_32.dil 0x770f0000 1997688832 WS2_32 dilirecy at 0x770f6b0e 0x6150000 0x6150000

Showing 1 to 15 of 15 enfries

We observe three hook functions (in red) with the hooking module name resolved (because we
injected it like in the previous case via LoadLibrary). However there are more hooked functions
(in yellow) without such module name. After checking the hooking data:

dll: WS2_32.d1l

s e sk s e sk sk sk ok sk sk sk ke sk ok sk sk sk e sk sl sl sk ok sk st sk sl ke sk ok sk sk sk e sk sl sk sk sk sk sk sl sk sk ok sk ok sk sk ol sk ok kol R ok ok okok skok okl kok ok
Hook type: Inline/Trampoline

Process: 108 (chrome.exe) (bitness as the image)

Victim module: WS2_32.dll (@x77efee00 - ©x77125600)

Function: WS2_32.dll!WSAEnumNetworkEvents at ex77ef31bl

Hook address: @xS5be©©oo

Hooking module base: @x5be©oge@

Hooking module: <unknown>

Disassembly(©):
ex770f31bl e94aceae8e JMP ex5befoo@

ex77ef31be 51 PUSH ECX

Ox770f31b7 813d48701177292e0f77 CMP DWORD [Ox77117048], ©x770f2e29
ex770f31cl 56 PUSH ESI

ex770f31c2 ef85b5850000 INZ ex77efb77d

ex770f31c8 83 DB @x83

PUSH EAX

b810153657 MOV EAX, @x57361510
870424 XCHG [ESP], EAX

c3 RET

0000 ADD [EAX], AL

0000

we can see that code flow redirects to the same module that was identified thanks to the SSL
VMT replacements:

Show [entries i
oo R Dl sooe.

i Base Size LoadCount LoadTime
2559 108 0x57320000 430080 @ 1 2016-12-06 14:23:14 UTC+0000 -s0t_x86_unpacked module

Showing 1 to 1 of 1 entries (filtered from 2,952 total entries)

Dumping the hooking module leads to the complete discovery of the threat (even more AV
engines confirm this):

Future work

Some improvements may be the following:
- Cleaning up of the code.
- Updating the SSL VMT lookup.
- Discovering additional new hooking methods by banking Trojans.

References

[1] P. Kalnai, M. Poslusny, “Browser attack points still abused by banking trojans,” In
Proceedings of the 27th Virus Bulletin International Conference, Madrid, October 2017.
(accepted)

