
Automating Packet Analysis
with Python

Joe McManus
mcmanus@automox.com

Who?

• Currently: CISO of Automox & Sr.
Researcher CERT/SEI/CMU
• Past: Professor @ CU, Director of

Security @ SolidFire, Head of R&D @
Webroot.

• MS @ Carnegie Mellon
• BS @ U of MD
• PhD From CU 2019(?, working on it)

What?

• Analyzing Packets with Python
• Use Scapy to pull out DNS queries, URLs, etc
• Use Pandas for time series
• Use Plotly for graphs

Why?

• During incident response you tend to do
the same steps.
• Wireshark is neat, but time consuming
• Some things are better left to

automation
• Python is fun
• Packets don’t lie!

Where?

• In a Virtual Machine
• Fedora 28

• But you can do this anywhere
• Requires python3-scapy
• Prettytable
• Pandas
• Plotly
• scapy_http
• networkx

When?

• Anytime you have a PCAP
• Incident Response
• Troubleshooting
• Application Security Analysis

Basics
• Scapy works at the network layer.
• Lets review the 7 OSI Model

OSI Model

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation
Layer

Application
Layer

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Cat 5

Ethernet

IP

TCP/UDP

SMB

JSON/XML

HTTP

Scapy
• Scapy is a Python module, but also a

stand alone application.
• pip3 install scapy

Scapy

• Scapy works at liked the layers of the
OSI model.
• You go from Layer 2 up.
• To find an IP address you start at layer 3.
• To print the source IP : print(pkt[IP].src)
• Destination IP: print(pkt[IP].dst)

Scapy

• What layer of the OSI Model is DNS?
• To print a DNS record you would check to

see if the packet has the layer.
• Then print the lookup out.
• if pkt.haslayer(DNS)

print((pkt.getlayer(DNS).qd.qname)
.decode("utf-8")

Hands On!

• Lets get started with code.
• First we need to create a pcap file.

• sudo tcpdump -c2000 -w example.pcap

• Open Chromium and browse the web for a few
minutes.

Code Snippets

• You can download examples here:
http://bit.ly/pficexamples
• I find code in slides hard to follow.

http://bit.ly/pficexamples

Coding

• You can download a complete swiss army knife
called PacketExaminer which uses all of these
examples.

• wget http://bit.ly/packetex
• Use your favorite editor:

• vi
• nano (sudo yum install nano -y)
• less packetexaminer.py

Coding

• If you want to download all of the examples in advance:
http://bit.ly/pficcode

unzip pficcode

cd packetexaminer-master/training/

http://bit.ly/pficcode

Imports

from scapy.all import *

from prettytable import PrettyTable

from collections import Counter, defaultdict

Read the file

• Next we tell scapy to read the pcap file
• packets = rdpcap('example.pcap’)

Process the
Packets

• To just read each packet and print the
source use a loop.

for pkt in packets:

if IP in pkt:

try:

print(pkt[IP].src)

except:

pass

Try it!

• Read your PCAP and print out each IP.
• Spend about 5 minutes.
• http://bit.ly/pficex1

http://bit.ly/pficex1

Count

• Obviously that was a bad way to view data.
• Lets add it to a list then run it through a

counter
srcIP=[]

for pkt in packets:

if IP in pkt:

try:

srcIP.append(pkt[IP].src)

except:

pass

Analyze the
Data

• Use a counter to create a count
cnt=Counter()

for ip in srcIP:

cnt[ip] += 1

PrettyTable

• A favorite Python module of mine is
PrettyTable.

• We’ll use another loop to create a sorted table
of results.

table= PrettyTable(["IP", "Count"])

for ip, count in cnt.most_common():
table.add_row([ip, count])

print(table)

PrettyTable

http://bit.ly/pficex2

Try it!

Print a table of results.

Plotting Data

• I find graphs and charts to be much
better tools for looking at network data
than a simple table.
• In the past we use Matplotlib.
• Slow, picky and unattractive.

• Plotly fixes all of this.

Plotly

• To install run:
pip3 install plotly

• Then just add the import in your
program.

from scapy.all import *

from collections import Counter

import plotly

Building

• Make a copy of your previous script, and we
will just add on to it.

• After printing the table add two new lists for X
and Y data.

xData=[]

yData=[]

• Then loop through the IP and X and Y
data

for ip, count in cnt.most_common():

xData.append(ip)

yData.append(count)

Plot the Plotly

• Plotly is a great tool, it opens your
system web browser to create
interactive graphs.

plotly.offline.plot({
"data":[plotly.graph_objs.Bar(x=xData, y=yData)]

})

Plot the Plotly

Try it!

Add the following to your script.

http://bit.ly/pficex3

Refine it

Add Labels

plotly.offline.plot({
"data":[plotly.graph_objs.Bar(x=xData, y=yData)],
"layout":plotly.graph_objs.Layout(

title="Source IP Occurrence",
xaxis=dict(title="Src IP"),
yaxis=dict(title="Count"))})

HTTP URLs

• URLs can be scraped from the packets.
• To get the uri use:
(pkt[http.HTTPRequest].Path).decode("utf-8")

• To get the host use:
(pkt[http.HTTPRequest].Host).decode("utf-8")

HTTP URLs

if http.HTTPRequest in pkt:
uri=(pkt[http.HTTPRequest].Path).decode("utf-8")
host=(pkt[http.HTTPRequest].Host).decode("utf-8")
url=host+uri
print(url)

Try it!

• http://bit.ly/pficex4

http://bit.ly/pficex4

Plot DNS

• With a simple change we can plot DNS
lookups.
• You can also print a table of DNS lookups.

Plot DNS

for pkt in packets:

if IP in pkt:

if pkt.haslayer(DNS) and pkt.getlayer(DNS).qr == 0:

lookup=(pkt.getlayer(DNS).qd.qname).decode("utf-8")

print(lookup)

Try it!

• http://bit.ly/pficex5

http://bit.ly/pficex5

Plot DNS

Try it!

• http://bit.ly/pficex6

http://bit.ly/pficex6

Time Series

• You will often want to plot data over time.
• The first thought is to just look at the length

of each packet.
• The problem with that is you almost always

plot the maximum MTU (usually 1500)

Time Series

Time Series

• To get around this you want to bin packets
over time.
• The package Pandas makes this incredibly

easy for us.

Time Series

• Start with the same imports, plus pandas.
from scapy.all import *

import plotly

from datetime import datetime

import pandas as pd

Time Series

• PCAPs have time in epoch, we need to confer to human
readable times.

#Read each packet and append to the lists.
for pkt in packets:

if IP in pkt:
try:

pktBytes.append(pkt[IP].len)
pktTime=datetime.fromtimestamp(pkt.time)
pktTimes.append(pktTime.strftime("%Y-%m-%d

%H:%M:%S.%f"))

except:
pass

Time Series

• Next convert the list to a pandas time
series.

bytes = pd.Series(pktBytes).astype(int)

Time Series

• Next convert the timestamp to a date_time for
Pandas.

times = pd.to_datetime(pd.Series(pktTimes).astype(str),
errors='coerce')

Time Series
• Create a Pandas data frame
df = pd.DataFrame({"Bytes": bytes, "Times":times})

Time Series
• Create a Pandas timestamp
df = df.set_index('Times')

Time Series
• Resample the data to 2 second bins
df2=df.resample('2S').sum()
print(df2)

Time Series

• Print the results
plotly.offline.plot({

"data":[plotly.graph_objs.Scatter(x=df2.index,

y=df2['Bytes'])],

"layout":plotly.graph_objs.Layout(

title="Bytes over Time ",

xaxis=dict(title="Time"),

yaxis=dict(title="Bytes"))})

Time Series

Try it!

• http://bit.ly/pficex7

http://bit.ly/pficex7

GeoIP

• It can be helpful to batch resolve locations in your
data.

pip3 install maxminddb-geolite2

GeoIP

• The data is in JSON format.

•

GeoIP

• Add a new imports
from geoip import geolite2

import json

GeoIP

• Add a new imports
from geolite2 import geolite2

import json

GeoIP

• Access the data
reader = geolite2.reader()

match = reader.get(IP)

country=match['country']['names']['en']

GeoIP

• Use a lot of try/except to handle issues.
if match:

try:

country=match['country']['names']['en']

except:

country="unknown"

try:

city=match['city']['names']['en']

except:

city="unknown"

else:

country="unknown"

city="unknown"

Try it!

• Add location to your script.
• http://bit.ly/pficex8

Tips

• I hate hardcoding filenames.
• You create a parser object and add options.
• parser=argparse.ArgumentParser(descript
ion='Example Command Line Parser')

• parser.add_argument(‘filename',
action="store")

• For troubleshooting, use:
• print(parser.parse_args())

Tips

PacketExaminer

• I’ve bundled all of this and more in to a open
source tool for DFIR called PacketExaminer.

• https://github.com/joemcmanus/packetexaminer

https://github.com/joemcmanus/packetexaminer

Multi Platform
Cloud Patching
& Management

Questions?

• Any questions?
• mcmanus@automox.com
• www.linkedin.com/in/networkforensics/
• github.com/joemcmanus

